Activation Energies and RockEval Analyses of Kerogenites in the Red River Formation in North Dakota Stephan H. Nordeng North Dakota Geological Survey 22nd Williston Basin Conference May 21, 2014

Geologic Investigations No. 178 North Dakota Geological Survey Edward C. Murphy, State Geologist Lynn D. Helms, Director Dept. of Mineral Resources 2014

- Petroleum Systems
- Role of Kerogen Kinetics and Permeability in accumulating "basin centered" petroleum.
- Red River Petroleum System
 - Examples of accumulation
 - Oil Generation Rates
 - Oil Migration Rate

Petroleum System

"A pod of *active* source rock and all genetically related oil and gas accumulations. It includes all of the geologic elements and processes that are essential if an oil and gas accumulation is to exist." (Magoon and Beaumont, 1999)

Essential geologic elements:

Petroleum sources – Organic Rich Reservoirs – Porous &Permeable Seals – Poorly Permeable Overburden – Thermal Insulation Processes include:

Trap formation Hydrocarbon generation Migration Accumulation

Petroleum Systems

- Dow (1974) Open system
 - All of the oil expelled from source beds migrates.
 - Reservoir pressures are at or close to hydrostatic.
 - Trapping efficiency low
- Something in between.
- Meissner (1978) Closed system
 - None of the oil expelled from source beds migrates.
 - Reservoir pressures are significantly above hydrostatic.
 - Trapping efficiency high

Closed Petroleum System

"A pod of *active* source rock and all genetically related oil and gas accumulations. It includes all of the geologic elements and processes that are essential if an oil and gas accumulation is to exist." (Magoon and Beaumont, 1999)

Essential geologic elements:

Organic Reservoir Seal Complex – Organic, Porous & Poorly Permeable

Overburden – Thermal Insulation Processes include:

Trap formation

Hydrocarbon generation **rates** Migration **rates** Accumulation

Generation Rate < Migration Rate \rightarrow Migration \rightarrow Accumulation

Generation Rate > Migration Rate \rightarrow Local Accumulation

Kerogen Kinetics and Rock Permeability are Critical

Source Rock Adjacent Rock

Generation Rate < Transmission Rate \rightarrow Migration

Kerogen Kinetics Activation Energy Frequency Factor Temperature Kerogen Mass

Permeability Fluid Viscosities Pore Space Texture Pressure Difference Open High Water Saturations Hydrostatic Fluid Pressure

Generation Rate > Transmission Rate \rightarrow Local Accumulation

Organic Reservoir Seal Complex Closed High Oil Saturations Elevated Fluid Pressure

PETRA 5/13/2014 4:57:16 PM

Horner Plot - Kremers 21X-22R NDIC: 6272 DST Interval: 10528 - 10665' depth

Kerogen Kinetics and Rock Permeability are Critical

Source Rock Adjacent Rock

Generation Rate < Transmission Rate \rightarrow Migration

Kerogen Kinetics

Activation Energy Frequency Factor Temperature Kerogen Mass

Permeability

Fluid Viscosities Pore Space Texture Pressure Difference Open High Water Saturations Hydrostatic Fluid Pressure

Generation Rate = Transmission Rate → Local Accumulation

Organic Reservoir Seal Complex Semi-Closed High Oil Saturations ? Elevated Fluid Pressure? Evaluating the Organic Component Generation Rate = Kerogen Kinetics

- How fast **ARE** HCs generated?
 - Arrhenius Equation

$$dx/dt = A e^{-Ea/RT} x$$

Where:

- T = Temperature (°K)
- x = kerogen mass
- t = time
- $E_a = Activation Energy$
- A = Frequency Factor
- R = Gas constant

HI

OI

How much reactive kerogen (x) is there?

Rock Eval Pyrogram

- Heating Rate 25°C/min
- ~ 0.1 g sample
- S₂ Mass crackable kerogen (mg/g)

Red River % TOC to S₂ Conversion (Provisional)

Oil Generation Rates from Non Isothermal Pyrolysis

Experimental Determination of E_a and A. How T_{max} Fits In

N&D 1-05H 9469

 β = Heating Rate (°K/Min) T_p = Peak Reaction Temp. (°K) E_a = Activation Energy A = Frequency Factor (1/min) R = Gas Constant (kJ/°K-mole)

Bakken Comparison

Well	E _a kJ/mol	Est. Temp (oC)	k mol/my	Well	E _a kJ/mol	Est. Temp (°C)	k mol/my
Stenejhem HD 27-1	229	138	2.54E-02	Grant Carlson No.1	2 34	160	1.90E-01
Federal DG-1	231	134	7.28E-03	Miller 1-21	228	121	1.92E-03
Texel 21-35	226	121	3.53E-03	Kremers 21X-22R	231	124	1.31E-03
Braaflat 11-11H	224	109	7.59E-04	Swampy-Mosser 21-9	230	122	1.24E-03
N&D 1-05H	223	106	5.97E-04	E-M Leland 10-15	227	116	1.07E-03
Dobrinski 18-44	222	100	2.64E-04	Karch 1	224	100	1.39E-04
				Little Boot 15-44	226	87	5.25E-06
				Naaden No.1	225	66	6.98E-08

"Maturation" of the Red River is not the same as the Bakken

Red River T_{max} to E_{ac} conversion (provisional)

Estimating Reaction Rates from RockEval6 $dx/dt = A \exp^{-Eac/RT} x$ $dS_2/dt \sim = A \exp^{-Eac/RT} S_2$ $S_{3} = mg Hydrocarbon / g Sample$ A = $3.15 \times 10^{27} \text{ m.y.}^{-1}$ R = 0.008314 kJ/mol $E_{ac} = 0.29 T_{max} + 98.3$ T = Formation Temperature (°K) t = time (m.y.)

 $dS_2/dt = A e^{-(0.29 \text{ Tmax} + 98.3)/\text{RT}} S_2$

Conclusions

- Assaying the organic carbon content of the Red River is difficult without core.
- Activation energies of Red River kerogenites increase with maturation.
- Maturation induced variations in activation energies for the Red River Fm. are not the same as for the Bakken Fm.
- It may be possible to estimate an "index" that is proportional to the oil generation rate in the Red River using experimentally determined relationships between RockEval data and nonisothermal kinetic data.