Geotechnical Insights of the Bakken

Julie A. LeFever

Geologic Investigations No. 170 North Dakota Geological Survey Edward C. Murphy, State Geologist Lynn D. Helms, Director Dept. of Mineral Resources 2014

Why the Bakken?

- 1. Pre-1987 Conventional Drilling
- 2. 1987-1999 Horizontal Drilling
- 3. 2001 Discovery of Elm Coulee Field, Richland Co., MT
 - 1. 2013 130,220,389 Bbls Oil, 113,551,136 MCF Gas, 773 wells
- 4. 2004 Discovery of Parshall Field, Mountrail Co., ND
 - 1. 2013 67,417,851 Bbls Oil, 31,012,481 MCF Gas, 246 wells
- 5. 2008 USGS Assessment (ND + MT); State of North Dakota Assessment
 - 1. 3.65 BBbls Oil, 1.85 TCF (USGS); 2.1 BBls Oil (NDIC ND only)
- 6. Unconventional Resource Play
- 7. 2013 USGS Assessment

Overview

- Examine the Bakken
 - Basic Information
 - Source Potential
- Observations
- Questions
- Tectonic Framework
- Predictability
- Conclusions

(Photos from the William E. "Bill" Shemorry Photograph Collection, property of the Williston State College Foundation; Photo 1, Harry Bakken, mother Mary Bakken, and (standing) Henry Bakken were photographed by the late Bill Shemorry for a story appearing in the Williams County Farmers Press on July 12, 1951, the day before drilling commenced on the H.O. Bakken No. 1; Photo 2, the H.O. Bakken No. 1 as photographed by Bill Shemorry in 1951.)

9620-9630

9670-9680

9710-9720

Stratigraphy

Bakken Formation

- Nomenclature
 - Defined in 1953
 - Amerada Petroleum #1 H.O. Bakken
 - Restricted to the Subsurface
 - 105 ft thick
 - upper and lower shale
 - middle limestone member

Distribution of Bakken and Three Forks Rocks in North Dakota

Average Total Organic Carbon: 11.5 weight % 30-40 % by volume

Upper Shale Lithofacies 5

Lithofacies 4

Lithofacies 3

Lithofacies 2

Lithofacies 1

Lower Shale

Conoco, Inc. #17 Watterud "A"

Shell Oil Co. #32-4 Young Bear

Upper Shale

Lithofacies 5

Lithofacies 4

Lithofacies 3

Lithofacies 2

Lithofacies 1

Lower Shale

Meridian Oil, Inc. #44-27 MOI

Shell Oil Co. #32-4 Young Bear

Middle Bakken Member

- Mixed Carbonate-Clastic Sequence
- Uniform Distribution of Sediments
 and Facies
- Nesson Anticline Barrier
 - Eastern side clastic rich
 - Western side sediment starved
- Low porosity-Low permeability

#33-053-01599 - 10835 ft

Lithofacies of the Middle Member

(From LeFever and others, 1991)

Source Rock Potential

- Total Organic Content 0 to 40%
 - Decrease towards depositional edge
- Kerogen
 - 70-90% amorphous; 0-20% herbaceous; 30% coaly; 5% woody
- Formed in subaquatic oxygen-restricted environmentHydrocarbon Generation
 - Depth of 9000 ft
 - 100° C
- Hydrocarbon Generation
 - Up to 413 billion barrels (ND & MT)
 - Bulk volume change in the rock
 - Formation of micro and macro fractures
 - Common in zones with higher organic content
- Highly overpressured 5500 to 7600 psi
 - Migration
 - Bakken Source System
- Producers
 - High Gravity Oil 35 to 46° API
 - No water

Nordeng after Meissner, 1978

Expulsion of Petroleum from Source Beds into Poorly Permeable Bounding Beds

•	Source	System	Formation	Members
	 Upper and Lower Shales 		Lodgepole	
• R	Reservoirs	Mississippian		\uparrow
	 Bakken Shales 		Bakken	Upper
	 Clastic-carbonate Middle Member of the Bakken Fm. 			Middle
– Do Pro	 Dolo-mudstones of the Pronghorn Member 	Devonian		Lower
	 Three Forks Fm. 			Pronghorn
	 Lodgepole (?) Lower 50' 		Three Forks	\downarrow

Accumulation

Reservairs

Lodgepole

Upper Bakken

Middle Bakken

Lower Bakken

Three Forks

- Low permeability beds above and below.
 - Prevents Migration
 - Produces High
 Pressures
 - Impossible to get out economically without some help.

Available Cores

- 1953 to 1987 94 Bakken Cores
 - 70 cores Restricted to the Nesson Anticline
 - 24 cores Vertical wells along the Bakken Fairway
- 1987 to 2000 36 Bakken Cores
- 2006 to Present 100+ Bakken Cores
 - Basinwide
 - Longer (150+ ft)

Hydrogen Index

Rock Eval Data Upper Bakken Shale

Overall Characteristics

- Total Organic Content 0 to 40% Kerogen
 - Type II Organic Matter 70-90% amorphous; 0-20% herbaceous; 30% coaly; 5% woody
- Sub-aquatic oxygen-restricted environment
- Hydrocarbon Generation -Depth of 9000 ft; 100° C
- Localized areas of high heat relative maturity
- Lower Shale is similar

So What About Parshall Field??

Bakken Generation and Migration

Texaco, Inc - #1-5 Thompson

Shell Oil Co. - #32-4 Young Bear

Upper Bakken Shale

Diagenesis

- Multiple phase of dolomitization
- Multiple cements
 - Calcite
 - Pyrite
 - Dolomite
 - Silica
- Dissolution
- Some reservoir enhancing and some reservoir destroying

Williston Basin Precambrian Basement Tectonics

3 Main Regions

Superior Craton Trans-Hudson Orogenic Belt Wyoming Craton

Existing Structures and Basement Terranes

Folds and Associated Faults

Salt Tectonics

Regional Fractures

Time Line of Bakken Development

(modified Nordeng, 2011)

Bakken Activity

Conventional Bakken (pre-1987)

Horizontal Drilling -Upper Bakken Shale (1987-1995)

Elm Coulee (2000-present)

Horizontal Drilling – Bakken Middle Member (2001-present)

Antelope Field

- Antelope Field (1953 to present)
 - •59 wells; current 12 wells
 - 20.2 million bbl oil
 - 285 MCF Gas
 - Three distinctive production zones
 - Bakken
 - "Sanish Sand"
 - Upper Three Forks
 - Significant structural component
 - •Best wells not on the crest of the structure

Elm Coulee

Middle Member Isopach

- Established with Kelly/Prospector – 2-33 Albin FLB
- NW SE trending dolomitized carbonate shoal
- 600 horizontal wells 450 square mile field
 - 130,220,389 Bbls Oil
 - 113,551,136 MCF Gas
- 3-9% Porosity; K .04 md
- Pressure of .53 psi
- Stimulations Sand, Gel, and Water

Balcron Oil - #44-24 Vaira SESE Sec. 24, T.24N., R.54E.

North Dakota 2004-06 (Before Parshall) Bakken Middle Member Wells

- 52 Horizontal Wells
 - 3 Dry Holes
 - 49 Producers
 - 9 wells > 300 BOPD
 - 17 wells 100 200 BOPD
 - 23 wells < 100 BOPD
 - Problems
 - Drilling and stimulating wells
 - Overpressured
 - Lithological Different
 - Higher BHTs

North Dakota - Lower Bakken Silt

Parshall Field

- Upper and Lower Shale

 Marginally mature??

 Explain the high production rates
- Presence of horizontal "hydraulic" fracturing thru section & expulsion fractures

Middle Member – Parshall Field

- Rock Eval Data
 - presence of 3 types of organic matter
 - Type I, Type II (Bakken), Type (III)
- Possible sequence of events
 - Type III gas prone organics
 - Matures earlier (?)
 - Overpressures the reservoir resulting in middle member "hydraulic-like" microfractures
 - Raises the P & T of the shales
 - Smectite to Illite onset generation in kerogen-rich layers
 - Mixed oil
 - Shales provide accommodation space

Isopach of the Lower Bakken Shale

Isopach of the Upper Member of the Three Forks Formation

ND Cross-Section

Isopach of the Lower Bakken Silt

Possible Interpretations For Depositional Pattern

Faulting

Heart River Central Montana Trough Trans-Hudson Orogenic Belt N-S Basement Faults

Dissolution of Salt

Devonian Prairie Salt Hummingbird Trough

Combination of Both

Changes to Current Stratigraphy

- The members have been formalized (Upper, Middle and Lower Members of the Bakken Formation)
- The name "Pronghorn Member" has been assigned to strata referred to as the "Sanish" The Pronghorn Member is now included in the Bakken as the lowest member
- The use of the term "Sanish" has been abandoned

Sinclair Field Manitoba

Production

- Middle Bakken
- Three Forks
 - 2 separate intervals

Proven & Probable Reserves

24 million bbls

Basement & Salt Involvement

Three Forks Cored-based Saturations

Three Forks Questions

Core-based data show variations in saturations

- Processed by different labs
 - Continental EOG cores same lab
- Adjacent to the Lower Shale
 - Pronghorn or Upper Bench (Mbr 5)
- > Due to structure?
 - Basement-related structures
 - > Overpressuring
- > Variation
 - Pore throat size?
 - Change in lithology?
- What is actually producing
 - Separate benches or fracture stimulating through the markers

Observations

Rocks

- Mixed clastic-carbonate sequence of the middle member
- Storage within the middle member
- Potential for a large amount of oil from fractured
 - Bakken shales, Middle Member, Three Forks
- Tectonic Elements
 - Basement structure with known associated
- Folds and faults
 - Overprinting
 - Salt Tectonics
- Source System
 - Geochemistry
 - Mature source system that is overpressured
 - Rock-Eval Data, Mineralogy, etc.
 - Wide Variety of Estimates
 - Lodgepole, Bakken, and Three Forks
 - Lateral migration
 - Single Continuous Front
 - Existing Faults
- Determine What is Producing and How
 - Bakken?
 - Three Forks & Lodgepole Potential?

#33-053-01599 - 10835 ft

Conclusions

Conventionals to Horizontal Wells

- Salt-based mud system to Oil-based mud system
- Natural Fractures or Stimulated
- Frac out of zone into water-bearing zones
- Sensitivity to fluids and mineral related problems
- Fracture communication

Multiple and Long Lateral Horizontal Wells

- Single to Multiple Stages
- Variety of Lateral Length Trend "Longer the Better"
- Multiple Pay Zones Bakken Three Forks

Williston Basin

- Variety of Other Producing Formations
 - Unknown Potential