



North Dakota Geological Survey

# Preliminary Results of Temperature Logging in the Williston Basin to determine Heat Flow

By

Mark R. McDonald

REPORT OF INVESTIGATION NO. 115 NORTH DAKOTA GEOLOGICAL SURVEY Edward C. Murphy, State Geologist Lynn D. Helms, Director Dept. of Mineral Resources 2015

# Abstract

The North Dakota Geological Survey (NDGS) has embarked on a temperature survey of the Williston Basin, North Dakota. To date, 23 temporarily abandoned oil and gas wells have been logged using a memory tool equipped with a temperature, gamma-ray, and casing collar locator probe lowered by a slickline. Several methods were used to estimate heat flow at the various locations including calculations based on average laboratory values of thermal conductivity, existing heat flow maps, the Bullard Method, and finding the harmonic mean of thermal conductivity. Although there is general agreement in calculated heat flow values between the various methods presented above, the results are largely predicated upon initial assumptions of either heat flow, thermal conductivity, or both.

While we are confident in the measurements obtained during this study with respect to thermal gradient, additional information with regard to thermal conductivity of the geologic formations will be required to estimate heat flow within the Williston Basin with better accuracy. Geologic formations can often be differentiated on the basis of "marker" beds, but there can be wide variations in mineralogy, lithology, porosity, permeability, density, etc., depending upon depositional environment, depth of burial and secondary processes from one location to another which can profoundly influence thermal conductivity and therefore greatly affect the calculated heat flow.

# Introduction

In 2014, the North Dakota Geological Survey (NDGS) initiated a temperature logging program in the Williston Basin. The primary goal of the program is to gain further insight into the thermal history of the basin that may result in the development of improved models for use in exploration for oil and natural gas (Prensky, 1992). The program has also been designed to gather data useful in the evaluation of the geothermal potential of the Williston Basin. Insight into the timing of petroleum generation, migration, accumulation and preservation can be gained by determining the thermal maturity of hydrocarbons and/or by using the paleoheat flux of a sedimentary basin (Nuccio and Barker, 1990). Subsurface temperature is important to understanding the origin and evolution of sedimentary basins and can also be used in the determination of important kinetic factors as described by Nordeng and Nesheim (2011) and Nordeng (2012, 2013, 2014) that can ultimately be used to predict the oil generation potential of various geologic formations within the Williston Basin. These heat flow values represent critical data that are needed to validate and, where needed, update current heat flow maps (Blackwell and Richards, 2004). Heat flow together with thermal conductivity values of subsurface rocks, can be used to estimate subsurface temperatures at other locations and depths. This information can also be used in the evaluation, assessment and possible exploration and development of geothermal energy in the Williston Basin.

# Methodology

While subsurface temperatures are routinely collected during logging and drill stem tests, true formation temperatures are rarely recorded because drilling, well completion and production operations can cause significant variations in the wellbore temperature from the actual temperature of the neighboring strata. These temperature differences can persist for days or

weeks after drilling or production has ceased. For example, during drilling, the circulation of drilling mud can cool the rock, during completion operations curing of cement and acidizing are exothermic reactions that can heat the rock, and gas entering the wellbore during production cools by expansion. In order to confidently obtain accurate subsurface temperatures, care must be taken to assure that the well bore and formation temperatures are the same, i.e. that the temperatures have equilibrated. A number of correction schemes have been derived to account for variations between actual formation temperatures and the measured wellbore temperatures obtained during drilling or while the well is producing such as that developed by Cooper and Jones (1959) or the Horner Method (Lachenbruch and Brewer, 1959). However, the best alternative is to make use of well bores that have been idle for months or, if possible, years so that equilibrated temperatures have been reached. Given these constraints and a review of the pertinent literature, the NDGS concluded that wells that have been temporarily abandoned and undisturbed for at least three months would meet the requirements of this study.

The project consisted of lowering a GOWell Model GTC43C Pegasus<sup>®</sup> temperature probe with an accuracy of 0.5°C into 23 temporarily abandoned oil and gas wells to the bottom of the well (depth of the plug). The tool included a memory controller sub and was lowered by means of a 0.092 inch "slickline" (nonconductive cable) operated by Gibson Energy Inc. (WISCO division). The depth of the logging runs ranged between approximately 3, 000 feet (915 m) and 13,000 feet (3960 m). The wells were selected based on location, depth, length of time of being undisturbed, and the ability to obtain permission from the current well operators to perform the logging. Locations of the wells are shown in Figure 1.

After setting the equipment up over a well (Figures 2 and 3), a gauge ring (dummy or slug) was lowered down to verify that there were no obstructions within the wellbore and to determine the maximum depth that could be logged for wells that still contained production tubing or where other potential obstructions might exist within the wellbore. After removal of the gauge ring, a period of time (generally on the order of an hour or more) was allowed to elapse in order for the well fluid temperatures to re-equilibrate before lowering the logging tools. For wells that were known to not contain production tubing, the gauge ring was not deployed. The wells were then logged as the tool was lowered into the well to minimize temperature disturbance or mixing of the fluids arising from the displacement of fluids by the volume of the tool. In addition to temperature, the tool was also equipped with a Casing Collar Locator (CCL) and a Gamma Ray probe to aid in correlation of the temperature probe with depth and with the geologic formations (Figure 4). As noted above, a memory controller sub was used which recorded the probe readings at a rate of one reading every 40 milliseconds (ms). The readings were downloaded to a computer after the tool was brought back to the surface. For comparison purposes, the wells were also logged on the way out of the wellbore. Temperature versus depth profiles of all the wells are presented in Appendix A.

It should be noted that for two of the wells, the Capa Madison Unit H-205 (NDIC #1140) and the Frink 13-15 (NDIC #13132), it is postulated that paraffin may have interfered with the temperature readings by clogging the window of the temperature probe pictured in Figure 5. Paraffins are a white or colorless soft solid that consist of a mixture of hydrocarbon molecules



Well Location and NDIC Permit Number
 City
 Figure 1. Well Locations.



**Figure 2.** Connecting the tool to the slickline. From left to right: Mike Harden, WISCO, David Smith, WISCO, Jay Jamali, GOWell, and Kevin Hammer, WISCO.



Figure 3. Slickline unit set up over NDIC Well # 12363, Astrid Ongstad 14-22 north of Tioga, ND.



**Figure 4.** Partial profiles of the Holte #6-21 well: a) partial gamma ray profile illustrating formation top picks; b) partial casing collar locator profile; c) partial temperature gradient profile with formation top picks.



**Figure 5.** Window of Temperature Probe that may have been clogged by paraffins at two of the wells.

containing between twenty and forty carbon atoms. They are solid at room temperature and begin to melt above approximately 99 °F (37 °C). In these cases the up-hole readings were used for that portion of the profile that appeared to be influenced by the paraffin. Figure 6 shows the downhole and uphole temperature profiles of the Capa Madison Unit H-205 well illustrating how the temperatures appear to have been influenced.

Gradient or station stops were also made as the tool was lowered into the wells. In the first few wells, these stops were made more frequently (every 2000 ft) to ascertain the response time of the tool in an effort to optimize the logging speed and to obtain an indication of the tool precision. An example of one of the gradient stops is presented as Figure 7 and graphs and statistical calculations of all of the gradient stops for all of the wells are included in Appendix B. Once a reasonable logging speed was determined (60 ft/min provided good results), a ten minute gradient stop was typically made at the approximate midpoint of the well and at the bottom of the logging interval for the remaining wells.

Formation thicknesses were determined by initially using depths of formation tops as determined by the NDGS. This information was obtained from the North Dakota Industrial



**Figure 6.** Downhole and Uphole Temperature Profiles of the Capa Madison H-205 well showing potential influence of paraffins clogging the temperature probe window.



**Figure 7**. Variation of temperature vs. time at station stop at 4000 ft (1220 m) for NDIC well #12363 – Astrid-Ongstad 14-22 in Williams County, ND.

Commission's (NDIC) Scout Ticket database (https://www.dmr.nd.gov/oilgas/ subscriptionservice.asp ). Formation thicknesses were subsequently adjusted by making corrections for Kelly busing elevations and evaluating the gamma-ray profile from each well to select formation tops. The formation tops have been graphical depicted with the temperature profiles that are presented in Appendix A.

The relationship between heat flow, thermal conductivity, and temperature gradient can be expressed by Fourier's Law:

|        | q= $\lambda \Delta T / \Delta Z$ ,                                                | (1)                       |    |
|--------|-----------------------------------------------------------------------------------|---------------------------|----|
| where: | q = conductive heat flow;                                                         |                           |    |
|        | $\lambda$ = thermal conductivity; and                                             |                           |    |
|        | $\Delta T/\Delta Z$ = temperature gradient (change of temperation of temperation) | ture over change in depth | ). |

As presented by Nordeng (2014), this equation can be re-arranged as:

$$\Delta T = q \Delta Z / \lambda.$$
 (2)

Estimates of the temperature at depth  $(T_n)$  are found by adding the temperature changes ( $\Delta T_i = QZ_i/\lambda_i$ ) associated with each deeper stratigraphic unit (i=1...n) to the "average" surface temperature ( $T_o$ ) as follows:

$$T_{n} = T_{o} + q (Z_{1}/\lambda_{1} + Z_{2}/\lambda_{2} + ... + Z_{n}/\lambda_{n}), \qquad (3)$$

where:

n = number of overlying stratigraphic units in the section, where i = 1...n (the deepest layer);

 $T_n$  = temperature at the base of the n<sup>th</sup> unit;

T<sub>o</sub> = average surface temperature;

 $Z_n$  = thickness of the n<sup>th</sup> unit;

 $\lambda_n$  = thermal conductivity of the n<sup>th</sup> layer.

Thus, to calculate the temperature at any point, it is necessary to know the average surface temperature, the thickness of the units (obtained from well logs), the thermal conductivities of the formations (obtained from the literature or direct measurements, e.g. Gosnold et al., 2012), and the conductive heat flow for the area (obtained from current heat flow maps, such as Blackwell and Richards, 2004). Although reasonable estimates of the average surface temperature and approximate thicknesses of the formations across the basin can be made, the biggest sources of error are caused by using inaccurate thermal conductivities or by assuming incorrect values of heat flow as current maps are based on a relatively limited dataset. Therefore, several methods were employed to calculate the heat flow for each of the wells using variations of equation 1, such that improved estimates of  $T_n$  can be made across the Williston Basin from equation (3). Initially, the temperature gradients measured in the wells that were logged and previously published values of thermal conductivity laboratory measurements, other literature values, and/or empirical estimates (Gosnold et al., 2012) were utilized to calculate the heat flow. The first method used was to match the graphical temperature gradient with assumed thermal conductivity and heat flow values using equation (3) above. Initially, heat flow was adjusted using the thermal conductivity values from the closest well as presented by Gosnold et al. (2012), and temperature at depth was modeled. Heat flow values were adjusted using a number of trials until the modeled temperatures were reasonably close to the measured values, as illustrated in Figure 8.

After a close match was obtained, the thermal conductivity values of each formation were incrementally adjusted until the modeled temperatures fell close to the measured profile. These thermal conductivity values were then used in the other three methods and corresponding algorithms to calculate heat flow as described below. It should be noted that the



**Figure 8.** Measured temperature profile and modeled estimates using various assumed heat flow values. After a close was match is obtained, values of thermal conductivity are adjusted to further refine/match the measured profile. Heat flow units are mW m<sup>-2</sup>.

heat flow of the upper 3000 to 5000 ft (1 to 1.5 km) was adjusted by a factor of about 90% to account for cooler surface temperatures during recent glacial periods and subsequent post-glacial warming per Majorowicz et al. (2012) and Gosnold et al. (2011). The graphical results of all of the wells are included as Appendix C.

The second method used equation (1) and heat flow for each formation was calculated using the thermal conductivities from the graphical method discussed above, and initial formation thickness as determined by the gamma-ray profile correlations discussed above. An average heat flow for all of the formations was then calculated. A weighted average was also determined by calculating a weighted thermal conductivity on the basis of formation thickness divided by the total well depth:

$$q = \lambda_{w} (\Delta T_{t} / \Delta Z_{t}); \text{ and}$$

$$\lambda_{w} = \lambda_{1}^{*} \Delta Z_{1} / \Delta Z_{t} + \lambda_{2}^{*} \Delta Z_{2} / \Delta Z_{t} + \dots \lambda_{n}^{*} \Delta Z_{n} / \Delta Z_{t},$$
(5)

where:

 $\begin{array}{l} \lambda_w = \mbox{weighted thermal conductivity;} \\ \Delta T_t = \mbox{temperature change from surface to bottom of well;} \\ \Delta Z_t = \mbox{total depth of well; and} \\ n, Z_n, \mbox{and } \lambda_n \mbox{are as before.} \end{array}$ 

An example of the results is presented in Table 1. In addition, for comparison purposes, average heat flow and weighted heat flow estimates were calculated using the thermal conductivity values utilized by Nordeng and Nesheim (2011) and Nordeng (2014), the results of which are also presented in Table 1. Nordeng arrived at his thermal conductivity values by utilizing a digitized version of the North American heat flow map published by Blackwell and Richards (2004) and back calculating the thermal conductivity values for each formation from the Rauch Shapiro Fee #21-9 well (NDIC #7591) located in Billings County, North Dakota.

The third approach employed the methodology of Bullard (1939), as cited by Beardsmore and Cull (2001). This method uses what Bullard refers to as the Thermal Resistance (R) plotted against the temperature. The thermal resistance is defined as:

$$R_{i} = R_{(i-1)} + \Delta Z_{i} / \lambda_{i}, \tag{6}$$

where:

$$\label{eq:resistance} \begin{split} R_i &= \text{thermal resistance of formation i;} \\ \Delta Z_i &= \text{depth range (formation thickness); and} \\ \lambda_i &= \text{formation thermal conductivity.} \end{split}$$

Heat flow is determined by calculating the slope of the best fit line of temperature versus thermal resistance as illustrated in Figure 9. As in method 1, separate slopes were calculated for

|                                                                                   | Depth (Z)                                              | Δz         | Temp (T)    | Δт     | λ <sup>1</sup> | $\lambda_{N}^{2}$ | $\lambda_{wtd}{}^3$             | $\lambda_{\rm Nwtd}^4$ | Δz <sub>i</sub> /λ | Ri          | λ <sub>hi</sub> 5                 | grad <sub>i</sub> | Q <sub>graph</sub> <sup>6</sup> | Q <sub>2</sub> <sup>7</sup> | Q <sub>N</sub> <sup>8</sup> | 9<br><b>Q</b> <sub>Bullard</sub> | <b>Q</b> <sub>hi</sub> <sup>10</sup> |
|-----------------------------------------------------------------------------------|--------------------------------------------------------|------------|-------------|--------|----------------|-------------------|---------------------------------|------------------------|--------------------|-------------|-----------------------------------|-------------------|---------------------------------|-----------------------------|-----------------------------|----------------------------------|--------------------------------------|
| Formation                                                                         | (m                                                     | ח)         | (°c         | :)     |                | Wm                | n <sup>-1</sup> K <sup>-1</sup> |                        | w                  | <b>к</b> -1 | W m <sup>-1</sup> K <sup>-1</sup> | °C km⁻¹           |                                 |                             | mW m <sup>-2</sup>          |                                  |                                      |
| FU/HC/FH <sup>11</sup>                                                            | 0.0                                                    | , 503.2    | 5.2         | , 22.5 | 1.40           | 1.72              | 0.18                            | 0.22                   | 359.45             | 359.45      |                                   |                   |                                 | 62.5                        | 76.8                        |                                  |                                      |
| Pierre                                                                            | 503.2                                                  | 783.6      | 27.6        | 39.8   | 1.15           | 1.62              | 0.23                            | 0.32                   | 681.43             | 1040.87     | 0.48                              | 44.65             |                                 | 58.4                        | 82.3                        |                                  | 21.6                                 |
| Greenhorn                                                                         | 1286.9                                                 | 125.0      | 67.4        | 8.1    | 1.10           | 1.62              | 0.03                            | 0.05                   | 113.61             | 1154.48     | 1.11                              | 48.38             |                                 | 71.2                        | 104.8                       |                                  | 53.9                                 |
| Mowry                                                                             | 1411.8                                                 | 29.0       | 75.5        | 1.6    | 1.20           | 1.80              | 0.01                            | 0.01                   | 24.13              | 1178.61     | 1.20                              | 49.82             |                                 | 64.7                        | 97.0                        |                                  | 59.7                                 |
| Newcastle                                                                         | 1440.8                                                 | 79.9       | 77.1        | 4.5    | 1.50           | 1.80              | 0.03                            | 0.04                   | 53.24              | 1231.85     | 1.17                              | 49.90             |                                 | 85.3                        | 102.3                       |                                  | 58.4                                 |
| Inyan Kara                                                                        | 1520.6                                                 | 107.9      | 81.6        | 3.0    | 1.60           | 2.35              | 0.04                            | 0.06                   | 67.44              | 1299.29     | 1.17                              | 50.27             |                                 | 43.9                        | 64.5                        |                                  | 58.8                                 |
| Swift                                                                             | 1628.5                                                 | 179.2      | 84.6        | 7.0    | 1.40           | 2.10              | 0.06                            | 0.10                   | 128.02             | 1427.30     | 1.14                              | 48.76             |                                 | 54.5                        | 81.8                        |                                  | 55.6                                 |
| Rierdon                                                                           | 1807.8                                                 | 151.5      | 91.6        | 6.0    | 1.60           | 2.10              | 0.06                            | 0.08                   | 94.68              | 1521.98     | 1.19                              | 47.78             |                                 | 63.1                        | 82.8                        |                                  | 56.8                                 |
| Spearfish                                                                         | 1959.3                                                 | 155.8      | 97.5        | 3.6    | 2.40           | 3.04              | 0.09                            | 0.12                   | 64.90              | 1586.88     | 1.23                              | 47.14             |                                 | 54.7                        | 69.3                        |                                  | 58.2                                 |
| Opeche                                                                            | 2115.0                                                 | 126.5      | 101.1       | 2.6    | 2.20           | 3.04              | 0.07                            | 0.10                   | 57.50              | 1644.37     | 1.29                              | 45.34             |                                 | 44.8                        | 62.0                        |                                  | 58.3                                 |
| Amsden                                                                            | 2241.5                                                 | 82.6       | 103.7       | 1.7    | 3.80           | 3.04              | 0.08                            | 0.06                   | 21.74              | 1666.11     | 1.35                              | 43.93             |                                 | 76.4                        | 61.1                        |                                  | 59.1                                 |
| Tyler                                                                             | 2324.1                                                 | 69.2       | 105.3       | 4.3    | 1.60           | 2.68              | 0.03                            | 0.05                   | 43.24              | 1709.35     | 1.36                              | 43.09             |                                 | 99.2                        | 166.1                       |                                  | 58.6                                 |
| Big Snowy                                                                         | 2393.3                                                 | 104.5      | 109.6       | 3.3    | 1.40           | 3.62              | 0.04                            | 0.10                   | 74.68              | 1784.03     | 1.34                              | 43.63             |                                 | 43.7                        | 112.9                       |                                  | 58.5                                 |
| Kibbey                                                                            | 2497.8                                                 | 47.2       | 112.9       | 1.0    | 2.70           | 3.62              | 0.03                            | 0.04                   | 17.50              | 1801.53     | 1.39                              | 43.11             |                                 | 55.9                        | 74.9                        |                                  | 59.8                                 |
| Madison                                                                           | 2545.1                                                 | 187.8      | 113.8       | 3.3    | 3.05           | 3.45              | 0.14                            | 0.16                   | 61.56              | 1863.09     | 1.37                              | 42.70             |                                 | 53.0                        | 59.9                        |                                  | 58.3                                 |
| Ratcliffe                                                                         | 2732.8                                                 | 75.3       | 117.1       | 1.6    | 3.05           | 3.45              | 0.06                            | 0.07                   | 24.68              | 1887.77     | 1.45                              | 40.96             |                                 | 65.7                        | 74.3                        |                                  | 59.3                                 |
| Frobisher                                                                         | 2808.1                                                 | 183.2      | 118.7       | 4.5    | 2.80           | 3.45              | 0.13                            | 0.16                   | 65.42              | 1953.19     | 1.44                              | 40.44             |                                 | 68.9                        | 84.9                        |                                  | 58.1                                 |
| Lodgepole                                                                         | 2991.3                                                 | 243.8      | 123.2       | 7.3    | 2.30           | 3.45              | 0.14                            | 0.21                   | 106.02             | 2059.21     | 1.45                              | 39.47             |                                 | 69.1                        | 103.6                       |                                  | 57.3                                 |
| Bakken                                                                            | 3235.1                                                 | 35.1       | 130.6       | 1.5    | 1.00           | 4.00              | 0.01                            | 0.04                   | 35.05              | 2094.26     | 1.54                              | 38.75             |                                 | 43.4                        | 173.7                       |                                  | 59.9                                 |
| Three Forks                                                                       | 3270.2                                                 | 59.4       | 132.1       | 1.6    | 2.70           | 4.00              | 0.04                            | 0.06                   | 22.01              | 2116.28     | 1.55                              | 38.80             |                                 | 74.4                        | 110.3                       |                                  | 60.0                                 |
| Birdbear                                                                          | 3329.6                                                 | 25.3       | 133.7       | 0.6    | 2.80           | 4.00              | 0.02                            | 0.03                   | 9.04               | 2125.31     | 1.57                              | 38.60             |                                 | 63.9                        | 91.4                        |                                  | 60.5                                 |
| Duperow                                                                           | 3354.9                                                 | 125.9      | 134.3       | 3.0    | 2.60           | 4.00              | 0.08                            | 0.13                   | 48.42              | 2173.73     | 1.54                              | 38.49             |                                 | 61.4                        | 94.4                        |                                  | 59.4                                 |
| Souris River                                                                      | 3480.8                                                 | 79.6       | 137.3       | 2.0    | 2.80           | 3.09              | 0.06                            | 0.06                   | 28.41              | 2202.14     | 1.58                              | 37.95             |                                 | 68.6                        | 75.7                        |                                  | 60.0                                 |
| Dawson Bay                                                                        | 3560.4                                                 | 32.0       | 139.2       | 0.8    | 2.75           | 3.09              | 0.02                            | 0.02                   | 11.64              | 2213.78     | 1.61                              | 37.65             |                                 | 65.4                        | 73.5                        |                                  | 60.5                                 |
| Prairie                                                                           | 3592.4                                                 | 86.9       | 140.0       | 1.7    | 4.00           | 2.18              | 0.09                            | 0.05                   | 21.72              | 2235.50     | 1.61                              | 37.52             |                                 | 76.7                        | 41.8                        |                                  | 60.3                                 |
| Winnipegosis                                                                      | 3679.2                                                 | 34.4       | 141.6       | 0.9    | 2.99           | 2.83              | 0.03                            | 0.02                   | 11.52              | 2247.01     | 1.64                              | 37.09             |                                 | 75.7                        | 71.7                        |                                  | 60.7                                 |
| Ashern                                                                            | 3713.7                                                 | 36.3       | 142.5       | 1.0    | 2.99           | 2.83              | 0.03                            | 0.03                   | 12.13              | 2259.15     | 1.64                              | 36.98             |                                 | 83.8                        | 79.3                        |                                  | 60.8                                 |
| Interlake                                                                         | 3750.0                                                 | 211.2      | 143.5       | 4.6    | 3.77           | 3.72              | 0.20                            | 0.20                   | 56.03              | 2315.17     | 1.62                              | 36.90             |                                 | 81.2                        | 80.1                        |                                  | 59.8                                 |
| вон                                                                               | 3961.2                                                 |            | 148.1       |        |                |                   |                                 |                        |                    |             |                                   |                   |                                 |                             |                             |                                  |                                      |
|                                                                                   |                                                        |            |             |        |                | $\Sigma =$        | 2.03                            | 2.58                   |                    |             |                                   |                   |                                 |                             |                             |                                  | 1                                    |
| Notes                                                                             |                                                        |            |             |        |                |                   |                                 |                        |                    |             | Average                           |                   |                                 | 65.3                        | 87.6                        | 61                               | 57.5                                 |
| 1 - Thermal condu                                                                 | uctivity deriv                                         | ved from g | graphical m | ethod  |                |                   |                                 |                        |                    |             | Wtd Avera                         | age               |                                 | 73.3                        | 93.0                        |                                  |                                      |
| 2 - Thermal conductivity used by Nordeng and Nesheim (2011) and Nordeng (2014)    |                                                        |            |             |        |                |                   |                                 |                        |                    |             | Shallow                           |                   |                                 |                             |                             | 58.4                             | 37.8                                 |
| 3 - Weighted average of graphical thermal conductivity                            |                                                        |            |             |        |                |                   |                                 |                        |                    |             | Deep                              | -                 | 60                              |                             |                             | 60.3                             | 59.1                                 |
| 4 - Weighted ave                                                                  | 4 - Weighted average of Nordeng's thermal conductivity |            |             |        |                |                   |                                 |                        |                    |             |                                   |                   |                                 |                             |                             |                                  |                                      |
| 5 - Harmonic mean of thermal conductivity                                         |                                                        |            |             |        |                |                   |                                 |                        |                    |             |                                   |                   |                                 |                             |                             |                                  |                                      |
| 6 - Heat flow derived from graphical method                                       |                                                        |            |             |        |                |                   |                                 |                        |                    |             |                                   |                   |                                 |                             |                             |                                  |                                      |
| 7- Heat flow derived from Equation 1 for each formation                           |                                                        |            |             |        |                |                   |                                 |                        |                    |             |                                   |                   |                                 |                             |                             |                                  |                                      |
| 8 - Heat Flow derived from Equation 1 and Nordengs $\lambda$                      |                                                        |            |             |        |                |                   |                                 |                        |                    |             |                                   |                   |                                 |                             |                             |                                  |                                      |
| 9 - Heat flow derived from Bullard's Method                                       |                                                        |            |             |        |                |                   |                                 |                        |                    |             |                                   |                   |                                 |                             |                             |                                  |                                      |
| 10 - Heat flow derived using harmonic mean method                                 |                                                        |            |             |        |                |                   |                                 |                        |                    |             |                                   |                   |                                 |                             |                             |                                  |                                      |
| 11- FU/HC/FH - Fort Union Group/Hell Creek Formation/Fox Hills Formation combined |                                                        |            |             |        |                |                   |                                 |                        |                    |             |                                   |                   |                                 |                             | l                           |                                  |                                      |

 Table 1. Heat Flow Calculations for the Vernie Chapin 13-21 Well (NDIC #16376) in McKenzie County, ND.



Figure 9. Example of a Bullard Plot. Slope of best fit line is the heat flow.

the shallow portions (upper 1 to 1.5 km) of the well bore that have been influenced by Pleistocene glacial climates and deeper portions that may be more representative of heat flow within the basin that has not been influenced by climatic changes. Results of example calculations are presented in Table 1.

The last method employed to estimate heat flow was to determine the harmonic mean of the thermal conductivity as described by Beardsmore and Cull (2011). This method calculates the harmonic mean of the thermal conductivity by dividing the depth to the top of each formation by the thermal resistance calculated using equation (6):

$$\lambda_{\rm hi} = Z_{\rm i}/R_{\rm i} \tag{7}$$

where:

$$\begin{split} \lambda_{hi} &= harmonic \text{ mean thermal conductivity;} \\ Z_i &= depth \text{ to top of formation; and} \\ R_i &= as \text{ above.} \end{split}$$

Next, the gradient is determined by dividing the difference between the temperature at the top of the formation and the temperature at the top of the stratigraphic column by the difference between the depth to the top of the formation and the depth to the top of the stratigraphic column under consideration:

$$grad_i = (T_i - T_s)/(Z_i - Z_s),$$
 (8)

Where:

 $\begin{array}{l} grad_i = temperature \ gradient \ to \ top \ of \ formation \ i; \\ T_i = temperature \ at \ top \ of \ formation \ i; \\ T_s = temperature \ at \ top \ of \ stratigraphic \ column; \\ Z_i = depth \ to \ top \ of \ formation \ i; \ and \\ Z_s = depth \ to \ top \ of \ stratigraphic \ column. \end{array}$ 

Heat flow for each formation is then calculated by taking the product of harmonic thermal conductivity times the gradient:

$$q_{hi} = \lambda_{hi} * \text{grad}_{i}. \tag{9}$$

An example calculation is provided in Table 1 and summaries of the complete results are presented in Table 2. Tables of the calculations for each method are attached as Appendix D. Figure 10 presents a map showing the average of the values obtained from the graphical, harmonic mean, Bullard and the weighted average methods. Figure 11 presents the same results (colors) overlain by a structure contour map (contour lines) of the top of the Three Forks Formation from data obtained from the NDIC database.

#### **Discussion and Conclusions**

Results of the preliminary study are presented in Table 2. While there is general agreement in calculated heat flow values between the various methods presented above, the results are largely predicated upon initial assumptions of either heat flow, thermal conductivity, or both. This is clearly illustrated by the large discrepancies between the values obtained by using Nordeng's thermal conductivity values and the values obtained using the other methods. In addition, the average and weighted average of method 2 results in relatively large differences in heat flow between formations. With the exception of the surface temperature forcing signal resulting from global climatic variations during the last ice age and subsequent post-glacial warming, calculated heat flow across the various formations should be nearly equivalent, if the thermal conductivity values used in the analyses are close to actual values.

The results of the harmonic method described above seem to yield the most consistent heat flow values between the formations (Table 1). However this issue still reduces down to a "chicken or egg" scenario in that heat flow and thermal conductivity are dependent upon each other and inaccurate assumptions of one profoundly affects the other. While we are confident in the measurements obtained during this study with respect to thermal gradients, it is evident that additional information with regard to thermal conductivities of the geologic formations will

| Cable 2. Summary of Heat Flow Estimates by Well |                            |                      |         |           |         |          |           |         |      |  |  |
|-------------------------------------------------|----------------------------|----------------------|---------|-----------|---------|----------|-----------|---------|------|--|--|
|                                                 |                            |                      | Tabular | Nordeng's | Bullard | Harmonic | Graphical | Average | Use  |  |  |
| Well #                                          | Well Name                  |                      |         |           |         |          |           |         |      |  |  |
| 2139                                            | NSCU V-706                 | Average              | 43.0    | 66.5      |         | 44       |           |         |      |  |  |
|                                                 | Northeast of Newburg, ND   | Wtd Avg.             | 46.7    | 74.6      |         |          |           |         |      |  |  |
|                                                 | <u> </u>                   | Shallow <sup>a</sup> |         |           |         | 23.2     |           |         |      |  |  |
|                                                 |                            | Deep                 |         |           | 47.5    | 44.5     | 48        | 46.7    | 46.7 |  |  |
| 8005                                            | Sivertson 29-23R1          | Average              | 62.2    | 80.9      |         | 61.5     |           |         |      |  |  |
|                                                 | Southeast of Keene, ND     | Wtd Avg.             | 76.2    | 94.4      |         | 01.0     |           |         |      |  |  |
|                                                 |                            | Shallow              |         | _         |         | 43.9     |           |         |      |  |  |
|                                                 |                            | Deep <sup>c</sup>    |         |           | 61.3    | 63.0     | 60.3      | 61.7    | 61.7 |  |  |
| 16376                                           | Vernie Chanin 32-21        | Average              | 65 3    | 87.6      | 01.0    | 56.8     |           | 01.7    | 0117 |  |  |
| 10070                                           | Southeast of Keene, ND     | Wtd Avg.             | 73.3    | 93.0      |         | 50.0     |           |         |      |  |  |
|                                                 |                            | Shallow              | , 010   | 5510      |         | 37.8     |           |         |      |  |  |
|                                                 |                            | Deep                 |         |           | 61.0    | 59.1     | 60.0      | 61.4    | 61.4 |  |  |
| 9653                                            | Cutlip #1                  | Average              | 49.3    | 75.4      |         | 45.9     |           |         |      |  |  |
|                                                 | Northwest of Alexander. ND | Wtd Avg.             | 52.0    | 74.8      |         |          |           |         |      |  |  |
|                                                 |                            | Shallow              |         |           |         | 33.0     |           |         |      |  |  |
|                                                 |                            | Deep                 |         |           | 47.9    | 47.6     | 48.0      | 48.2    | 48.2 |  |  |
| 10103                                           | Iverson State A-1          | Average              | 49.9    | 76.3      |         | 52.7     |           |         |      |  |  |
|                                                 | Northwest of Alexander, ND | Wtd Avg.             | 54.9    | 74.9      |         |          |           |         |      |  |  |
|                                                 |                            | Shallow              |         |           |         | 43.3     |           |         |      |  |  |
|                                                 |                            | Deep                 |         |           | 52.1    | 54.2     | 50.2      | 51.6    | 51.6 |  |  |
| 12363                                           | Astrid-Ongstad             | Average              | 54.2    | 82.2      |         | 51.4     |           |         |      |  |  |
|                                                 | Northeast of Tioga, ND     | Wtd Avg.             | 61.1    | 87.2      |         |          |           |         |      |  |  |
|                                                 |                            | Shallow              |         |           |         | 38.6     |           |         |      |  |  |
|                                                 |                            | Deep                 |         |           | 52.7    | 52.7     | 52.0      |         | 52.9 |  |  |
| 16182                                           | 2004 JV-P NDCA 7           | Average              | 53.8    | 86.5      |         | 45.8     |           |         |      |  |  |
|                                                 | North of Tioga, ND         | Wtd Avg.             | 56.6    | 85.2      |         |          |           |         |      |  |  |
|                                                 |                            | Shallow              |         |           |         | 33.1     | 44.1      |         |      |  |  |
|                                                 |                            | Deep                 |         |           | 50.4    | 47.8     | 49.0      |         | 50.3 |  |  |
| 13666                                           | Rieder 1-9 SWD             | Average              | 49.8    | 79.4      |         | 45.0     |           |         |      |  |  |
|                                                 | North of Williston, ND     | Wtd Avg.             | 52.1    | 77.9      |         |          |           |         |      |  |  |
|                                                 |                            | Shallow              |         |           |         | 34.5     |           |         |      |  |  |
|                                                 |                            | Deep                 |         |           | 48.0    | 46.7     | 48.5      | 48.3    | 48.3 |  |  |
| 15137                                           | Holte 6-21                 | Average              | 60.0    | 87.1      |         | 58.0     |           |         |      |  |  |
|                                                 | Southwest of Columbus, ND  | Wtd Avg.             | 70.3    | 90.0      |         |          |           |         |      |  |  |
|                                                 |                            | Shallow              |         |           | 55.6    | 57.8     |           |         |      |  |  |
|                                                 |                            | Deep                 |         |           | 60.8    | 60.4     | 60.0      | 60.3    | 60.3 |  |  |
| 15593                                           | FHMU K-810                 | Average              | 60.5    | 87.9      |         | 52.4     |           |         |      |  |  |
|                                                 | West of Fryburg, ND        | Wtd Avg.             | 64.1    | 86.2      |         |          |           |         |      |  |  |
|                                                 |                            | Shallow              |         |           | 55.8    | 37.9     |           |         |      |  |  |
|                                                 |                            | Deep                 |         |           | 58.8    | 55.3     | 58.0      | 58.2    | 58.2 |  |  |
| 17043                                           | St. Andes 151-89-2413H-1   | Average              | 41.6    | 60.8      |         | 40.1     |           |         |      |  |  |
|                                                 | Southeast of Parshall, ND  | Wtd Avg.             | 52.3    | 69.5      |         |          |           |         |      |  |  |
|                                                 |                            | Shallow              |         |           |         | 28.3     | 10.0      |         |      |  |  |
|                                                 |                            | Deep                 |         |           | 41.5    | 40.5     | 42.0      | 41.4    | 41.4 |  |  |
| 13132                                           | Frink 13-15                | Average              | 39.7    | 63.4      |         | 34.2     |           |         |      |  |  |
|                                                 | South of Parshall, ND      | vvtd Avg.            | 43.1    | 61.8      |         | 42.2     |           |         |      |  |  |
|                                                 |                            | Door                 |         |           | 20.0    | 13.3     | 40.0      | 20 F    | 20 5 |  |  |
| 10400                                           | Nolson 1 11U               | Deep                 | 70.2    | 110.2     | 39.9    | 38.4     | 40.0      | 39.5    | 39.5 |  |  |
| 16160                                           |                            | Average              | /8.3    | 110.3     |         | 51.5     |           |         |      |  |  |
|                                                 | South OF POWERS Lake, ND   | Shallow              | 64.7    | 80.4      | 20.1    | 24.0     |           |         |      |  |  |
|                                                 |                            | Deen                 |         |           | 50.1    | 24.U     | 50.0      | EQ 1    | EQ 1 |  |  |
|                                                 |                            | Inceh                | 1       |           | J9.Z    | JU.1     | 59.0      | 1.0C    | 20.1 |  |  |

Notes: a - Shallow is the upper 1 to 1.5 km that may reflect influence of Paleoclimate and subsequent post-glacial warming.

b - Glacial periods may reduce heat flow by 10 to 15% per Majorowicz et al. (2012) and Gosnold et al. (2011).

c - Deep are values calculated below 1 to 1.5 km

| Table 2 (cont.) Summary of Heat Flow Estimates by Well |                            |          |         |           |         |                    |           |         |      |  |
|--------------------------------------------------------|----------------------------|----------|---------|-----------|---------|--------------------|-----------|---------|------|--|
|                                                        |                            |          | Tabular | Nordeng's | Bullard | Harmonic           | Graphical | Average | Use  |  |
| Well #                                                 | Well Name                  |          |         |           |         | mW m <sup>-2</sup> |           |         |      |  |
| 17317                                                  | E-M Emmel 10-3             | Average  | 60.9    | 78.7      |         | 49.9               |           |         |      |  |
|                                                        | West of Sherwood, ND       | Wtd Avg. | 73.3    | 84.8      |         |                    |           |         |      |  |
|                                                        |                            | Shallow  |         |           | 56.1    | 13.7               |           |         |      |  |
|                                                        |                            | Deep     |         |           | 56.8    | 53.7               | 59.0      | 57.6    | 57.6 |  |
| 12280                                                  | Brandjord 1-20             | Average  | 45.2    | 68.8      |         |                    |           |         |      |  |
|                                                        | East of Westhope, ND       | Wtd Avg. | 51.7    | 73.7      |         |                    |           |         |      |  |
|                                                        |                            | Shallow  |         |           |         |                    |           |         |      |  |
|                                                        |                            | Deep     |         |           | 52.7    | 49.8               | 54.0      | 52.0    | 52.0 |  |
| 1140                                                   | Capa-Madison Unit H-205    | Average  | 75.2    | 93.5      |         | 58.1               |           |         |      |  |
|                                                        | South of Tioga, ND         | Wtd Avg. | 85.8    | 101.6     |         |                    |           |         |      |  |
|                                                        |                            | Shallow  |         |           | 39.2    | 10.5               |           |         |      |  |
|                                                        |                            | Deep     |         |           | 68.2    | 65.4               | 71.0      | 68.2    | 68.2 |  |
| 8706                                                   | Berge C 1                  | Average  | 51.5    | 77.5      |         | 46.8               |           |         |      |  |
|                                                        | Southeast of Alexander, ND | Wtd Avg. | 56.0    | 81.0      |         |                    |           |         |      |  |
|                                                        |                            | Shallow  |         |           |         | 32.4               |           |         |      |  |
|                                                        |                            | Deep     |         |           | 50.8    | 48.9               | 52.0      | 50.8    | 50.8 |  |
| 17230                                                  | Roosevelt Federal 2-4H     | Average  | 56.8    | 75.7      |         | 48.9               |           |         |      |  |
|                                                        | Northeast of Beach, ND     | Wtd Avg. | 63.1    | 82.3      |         |                    |           |         |      |  |
|                                                        |                            | Shallow  |         |           | 54.3    | 29.6               |           |         |      |  |
|                                                        |                            | Deep     |         |           | 52.7    | 51.2               | 55.0      | 53.9    | 53.9 |  |
| 15785                                                  | Ann 1                      | Average  | 52.5    | 77.8      |         | 45.2               |           |         |      |  |
|                                                        | North of Arnegard, ND      | Wtd Avg. | 59.3    | 81.3      |         |                    |           |         |      |  |
|                                                        |                            | Shallow  |         |           | 49.3    | 17.6               |           |         |      |  |
|                                                        |                            | Deep     |         |           | 50.9    | 50.0               | 52.0      | 51.4    | 51.4 |  |
| 10278                                                  | Mud Buttes State 1-36      | Average  | 53.9    | 76.0      |         | 47.8               |           |         |      |  |
|                                                        | South of Rhame, ND         | Wtd Avg. | 59.5    | 84.0      |         |                    |           |         |      |  |
|                                                        |                            | Shallow  |         |           |         | 41.7               |           |         |      |  |
|                                                        |                            | Deep     |         |           | 52.2    | 49.3               | 52.0      | 51.8    | 51.8 |  |
| 17014                                                  | Edwards 1-33BH             | Average  | 48.9    | 70.2      |         | 34.0               |           |         |      |  |
|                                                        | Northwest of Plaza, ND     | Wtd Avg. | 48.5    | 66.4      |         |                    |           |         |      |  |
|                                                        |                            | Shallow  |         |           | 37.1    | 26.1               |           |         |      |  |
|                                                        |                            | Deep     |         |           | 41.0    | 38.6               | 40.0      | 39.9    | 39.9 |  |
| 3090                                                   | Grenora-Madison Unit 08    | Average  | 43.1    | 73.6      | 45.5    | 43.1               |           |         |      |  |
|                                                        | Southwest of Grenora, ND   | Wtd Avg. | 45.6    | 74.2      |         |                    |           |         |      |  |
|                                                        |                            | Shallow  |         |           | 44.6    | 25.6               |           |         |      |  |
|                                                        |                            | Deep     |         |           | 44.0    | 47.9               | 45.5      | 45.1    | 45.1 |  |
| 13725                                                  | JC Wodds 26H-1             | Average  | 50.8    | 76.4      | 52.2    | 38.8               |           |         |      |  |
|                                                        | North of Lignite, ND       | Wtd Avg. | 53.8    | 78.7      |         |                    |           |         |      |  |
|                                                        |                            | Shallow  |         |           | 50.6    | 25.4               |           |         |      |  |
|                                                        |                            | Deep     |         |           | 53.6    | 48.9               | 54.0      | 51.8    | 51.8 |  |

Notes: a - Shallow is the upper 1 to 1.5 km that may reflect influence of Paleoclimate and subsequent post-glacial warming.

b - Glacial periods may reduce heat flow by 10 to 15% per Majorowicz et al. (2012) and Gosnold et al. (2011).

c - Deep are values calculated below 1 to 1.5 km



Figure 10. Mean heat flow of the graphical, harmonic mean, the Bullard method and the weighted average methods.



Figure 11. Heat Flow (colors) overlain by structure contours of the top of the Three Forks Formation.

be required to accurately determine heat flow within the Williston Basin. Geologic formations can often be differentiated on the basis of "marker" beds; however there can be wide variations in mineralogy, lithology, porosity, permeability, density, etc., depending upon depositional environment, depth of burial, secondary processes, etc., from one location to another within the same formation.

These criteria can profoundly influence thermal conductivity and therefore greatly influence the calculated heat flow.

# **Future Work**

The NDGS currently has plans to log an additional 20 to 30 wells over the next several years. However, as noted above, some funding may be redirected to obtain additional thermal conductivity information from the wells that are being logged. Ideally, thermal conductivity values from core samples obtained from the wells that are logged would allow for the calculation of a reasonable estimate of heat flow from specific locations. This may also allow for better estimates of thermal conductivity by reverse modeling for the various formations at these locations that do not have core samples. This information, combined with thermal maturity estimates obtained by other methods (Nordeng and Nesheim, 2011) would provide better estimates of heat flow within the Williston Basin, better predictions of thermal maturity of hydrocarbons and the geothermal potential of the region.

# Acknowledgements

Funding for this project was provided by the North Dakota Petroleum Council and the State of North Dakota. We would also like to acknowledge Hess Corporation, Jordan Exploration, Inc., Missouri Basin Well Service Inc., Enduro Operating, LLC, Liberty Resources LLC, Vanguard Operating LLC, Whiting Oil and Gas Corporation, Legacy Reserves Operating LP, Triangle USA Petroleum Corporation, Eagle Operating, Inc., TAQA North USA and Citation Oil and Gas Corporation for their cooperation and assistance in allowing us access to their wells.

# References

- Blackwell, D.D. and Richards, M.C., 2004, Geothermal map of North America: American Association of Petroleum Geologists, Tulsa Oklahoma, 1 sheet, scale 1:6,500,000.
- Beardsmore, G.R., and J.P. Cull, 2001, Crustal heat flow, a guide to measurement and modelling: Cambridge University Press, Cambridge, United Kingdom, 324 pp.
- Bullard, E.C., (1939), Heat flow in South Africa: Proceedings of the Royal Society of London, A, 173, p. 428-450.
- Cooper, L.R., and C. Jones, 1959, The determination of virgin strata temperatures from observations in deep survey boreholes: Geophysical Journal of the Royal Astronomical Society, v. 2, p. 116-131.
- Lachenbruch A.H., and M.C. Brewer, 1959, Dissipation of the temperature effect of drilling a well in Artic Alaska, U.S. Geological Survey Bulletin, 1083-C, p. 73-109.

- Gosnold, W.D., M.R. McDonald, R. Klenner and D. Merriam, 2012, Thermostratigraphy of the Williston Basin, GRC Transactions, v. 36, p. 663-670.
- Gosnold, W., J. Majorowicz, R. Klenner and S. Hauck, 2011 Implications of post-glacial warming for northern hemisphere heat flow, Geothermal Resources Council Transactions, v. 35, p. 795-799.
- Majorowicz, J., W. Gosnold, A. Gray, J. Safanda, R. Klenner, and M. Unsworth, 2012, Implications of post-glacial warming for Northern Alberta heat flow – correcting for the underestimate of the geothermal potential, Geothermal Resources Council Transactions, v. 36, p. 693-698.
- McDonald, M.R., and S.H. Nordeng, 2014, Temperature logging in the Williston Basin; North Dakota Department of Mineral Resources Geo News, v.41, n. 2, p. 11-13.
- Nordeng, S.H., and T.O. Nesheim, 2011, Determination of subsurface temperatures and the fraction of kerogen converted to petroleum within the Rauch Shapiro Fee #21-9, Billings Co., ND, North Dakota Geological Survey, Geological Investigation 146.
- Nordeng, S.H., 2012, Determination of activation energy and frequency factor for samples of the Bakken Formation (Mississippian-Devonian) Williston Basin ND: North Dakota Geological Survey, Geological Investigation 163, 15 pp.
- Nordeng, S.H., 2013, Evaluating source rock maturity using multi-sample kinetic parameters from the Bakken Formation (Mississippian-Devonian) Williston Basin ND, North Dakota Geological Survey, Geological Investigation 164, 19 pp.
- Nordeng, S.H., 2014, Building the science for advancing oil and gas exploration and development in the Williston Basin, North Dakota Department of Mineral Resources Geo News, v.41, n. 1, p. 14-18.
- Nuccio, V.F., and C.E. Barker, eds., 1990, Applications of thermal maturity studies to energy exploration, Society of Economic Paleontologists and Mineralogists, Rocky Mountain Section, 174 pp.
- Prensky, S., 1992, Temperature measurements in boreholes: an overview of engineering and scientific applications, The Log Analyst, v. 33, no. 3, p. 313-333.

# APPENDIX A TEMPERATURE PROFILES














































## APPENDIX B STATION STOPS








































































































## APPENDIX C

## TEMPERATURE PROFILES AND MODELED HEAT FLOW













C-6

## Temperature Profile and Modeled Heat Flow NDIC 10278 - Mud Buttes State 1-36 Bowman County, ND
































C-22



## APPENDIX D BULLARD METHOD PLOTS














































## APPENDIX E

# SUMMARIES OF HEAT FLOW CALCULATIONS

## Summary of Heat Flow Calculations NDIC 1140 Capa Madison Unit H-205 Williams County, ND

|                                                   | Depth (Z)     | Δz            | Temp (T)           | Δτ          | λ <sup>1</sup> | λ <sup>2</sup> | $\lambda_{wtd}^{3}$             | $\lambda_{Nwtd}^{4}$ | Δz <sub>i</sub> /λ | R <sub>i</sub>  | λ <sub>hi</sub> 5                 | grad <sub>i</sub>   | Q <sub>graph</sub> <sup>6</sup> | Q <sub>2</sub> <sup>7</sup> | Q <sub>N</sub> <sup>8</sup> | 9<br>Q <sub>Bullard</sub> | Q <sub>hi</sub> <sup>10</sup> |
|---------------------------------------------------|---------------|---------------|--------------------|-------------|----------------|----------------|---------------------------------|----------------------|--------------------|-----------------|-----------------------------------|---------------------|---------------------------------|-----------------------------|-----------------------------|---------------------------|-------------------------------|
| Formation                                         | (r            | n)            | (°C                | )           |                | Wm             | n <sup>-1</sup> K <sup>-1</sup> |                      | w                  | К <sup>-1</sup> | W m <sup>-1</sup> K <sup>-1</sup> | °C km <sup>-1</sup> | 8.up.                           | -                           | mW m <sup>-2</sup>          | Dunara                    |                               |
| Till                                              | 0.0           | 8.8           | 8.4                | 1.1         | 1.10           | 1.72           | 0.00                            | 0.01                 | 8.04               | 8.04            |                                   |                     |                                 | 133.2                       | 208.2                       |                           | 1                             |
| FU/HC/FH                                          | 8.8           | 319.7         | 9.4                | 12.1        | 1.00           | 1.72           | 0.14                            | 0.25                 | 319.74             | 327.77          | 0.03                              | 121.05              |                                 | 37.9                        | 65.3                        |                           | 3.3                           |
| Pierre                                            | 328.6         | 747.4         | 21.6               | 36.6        | 1.80           | 1.62           | 0.60                            | 0.54                 | 415.21             | 742.98          | 0.44                              | 40.17               |                                 | 88.1                        | 79.3                        |                           | 17.8                          |
| Greenhorn                                         | 1075.9        | 100.6         | 58.2               | 6.9         | 1.40           | 1.62           | 0.06                            | 0.07                 | 71.85              | 814.82          | 1.32                              | 46.28               |                                 | 95.5                        | 110.5                       |                           | 61.1                          |
| Mowry                                             | 1176.5        | 30.5          | 65.0               | 1.6         | 1.00           | 1.80           | 0.01                            | 0.02                 | 30.48              | 845.30          | 1.39                              | 48.15               |                                 | 53.8                        | 96.9                        |                           | 67.0                          |
| Newcastle                                         | 1207.0        | 76.5          | 66.7               | 4.5         | 1.30           | 1.80           | 0.04                            | 0.06                 | 58.85              | 904.15          | 1.33                              | 48.29               |                                 | 76.5                        | 105.9                       |                           | 64.5                          |
| Inyan Kara                                        | 1283.5        | 139.0         | 71.2               | 3.7         | 1.70           | 2.35           | 0.11                            | 0.15                 | 81.76              | 985.91          | 1.30                              | 48.92               |                                 | 45.7                        | 63.2                        |                           | 63.7                          |
| Swift                                             | 1422.5        | 138.4         | 74.9               | 6.1         | 2.50           | 2.10           | 0.15                            | 0.13                 | 55.35              | 1041.26         | 1.37                              | 46.77               |                                 | 109.3                       | 91.8                        |                           | 63.9                          |
| Rierdon                                           | 1560.9        | 175.6         | 80.9               | 7.0         | 1.80           | 2.10           | 0.14                            | 0.16                 | 97.54              | 1138.80         | 1.37                              | 46.50               |                                 | 71.8                        | 83.7                        |                           | 63.7                          |
| Spearfish                                         | 1736.4        | 110.6         | 87.9               | 2.7         | 1.60           | 3.04           | 0.08                            | 0.15                 | 69.15              | 1207.95         | 1.44                              | 45.83               |                                 | 39.6                        | 75.3                        |                           | 65.9                          |
| Minnekahta/Opech                                  | 1847.1        | 88.7          | 90.7               | 1.8         | 4.00           | 3.04           | 0.16                            | 0.12                 | 22.17              | 1230.12         | 1.50                              | 44.57               |                                 | 83.0                        | 63.1                        |                           | 66.9                          |
| Broom Creek                                       | 1935.8        | 80.2          | 92.5               | 1.7         | 2.30           | 3.04           | 0.08                            | 0.11                 | 34.85              | 1264.98         | 1.53                              | 43.48               |                                 | 48.5                        | 64.1                        |                           | 66.5                          |
| Tyler                                             | 2015.9        | 72.2          | 94.2               | 4.2         | 3.20           | 2.68           | 0.10                            | 0.09                 | 22.57              | 1287.55         | 1.57                              | 42.59               |                                 | 185.2                       | 155.1                       |                           | 66.7                          |
| Big Snowy                                         | 2088.2        | 104.5         | 98.4               | 3.2         | 2.00           | 3.62           | 0.09                            | 0.17                 | 52.27              | 1339.82         | 1.56                              | 43.11               |                                 | 62.0                        | 112.2                       |                           | 67.2                          |
| Kibbey Lime                                       | 2192.7        | 45.4          | 101.6              | 1.1         | 2.10           | 3.62           | 0.04                            | 0.07                 | 21.63              | 1361.45         | 1.61                              | 42.54               |                                 | 48.6                        | 83.7                        |                           | 68.5                          |
| Madison                                           | 2238.1        | 200.0         | 102.7              | 2.1         | 2.30           | 3.45           | 0.21                            | 0.31                 | 86.95              | 1448.40         | 1.55                              | 42.14               |                                 | 24.7                        | 37.1                        |                           | 65.1                          |
| вон                                               | 2438.1        |               | 104.8              |             | 1.20           | 4.00           |                                 |                      |                    |                 | 1.50                              | 40.42               |                                 |                             |                             |                           |                               |
|                                                   |               |               |                    |             |                |                |                                 |                      |                    |                 |                                   |                     |                                 |                             |                             |                           |                               |
|                                                   |               |               |                    |             |                | Σ =            | 2.04                            | 2.41                 |                    |                 |                                   |                     |                                 |                             |                             |                           |                               |
| Notes                                             |               |               |                    |             |                |                |                                 |                      |                    |                 | Average                           |                     |                                 | 75.2                        | 93.4                        | 71                        | 58.1                          |
| 1 - Thermal conduct                               | ivity derive  | d from grap   | hical metho        | d           |                |                |                                 |                      |                    |                 | Wtd Averag                        | ge                  |                                 | 85.8                        | 101.5                       |                           |                               |
| 2 - Thermal conduct                               | ivity used b  | y Nordeng a   | and Nesheim        | n (2011) a  | nd Norde       | ng (2014)      |                                 |                      |                    |                 | Shallow                           |                     |                                 |                             |                             | 37.9                      | 10.5                          |
| 3 - Weighted average                              | ge of graphic | cal thermal   | conductivity       |             |                |                |                                 |                      |                    |                 | Deep                              |                     | 71                              |                             |                             | 68.2                      | 65.4                          |
| 4 - Weighted average                              | ge of Norder  | ng's therma   | l conductivit      | у           |                |                |                                 |                      |                    |                 |                                   |                     |                                 |                             |                             |                           |                               |
| 5 - Harmonic mean                                 | of thermal o  | conductivity  | ,                  |             |                |                |                                 |                      |                    |                 |                                   |                     |                                 |                             |                             |                           |                               |
| 6 - Heat flow derive                              | d from grap   | hical metho   | bd                 |             |                |                |                                 |                      |                    |                 |                                   |                     |                                 |                             |                             |                           |                               |
| 7- Heat flow derived                              | d from Equa   | tion 1 for ea | ach formatio       | n           |                |                |                                 |                      |                    |                 |                                   |                     |                                 |                             |                             |                           |                               |
| 8 - Heat Flow derive                              | d from Equ    | ation 1 and   | Nordengs $\lambda$ |             |                |                |                                 |                      |                    |                 |                                   |                     |                                 |                             |                             | 1                         |                               |
| 9 - Heat flow derive                              |               |               |                    |             |                |                |                                 |                      |                    | L               |                                   |                     |                                 |                             |                             |                           |                               |
| 10 - Heat flow derived using harmonic mean method |               |               |                    |             |                |                |                                 |                      |                    |                 |                                   |                     |                                 |                             |                             |                           |                               |
| 11- FU/HC/FH - Fort                               | Union Grou    | up/Hell Cree  | ek Formatior       | h/Fox Hills | s Formatio     | on combin      | ed                              |                      |                    |                 |                                   |                     |                                 |                             |                             |                           |                               |

## Summary of Heat Flow Calculations NDIC 2139 NSCU V-706 Bottineau County, ND

|                                                   | Depth (Z)                                   | Δz           | Temp (T)     | Δτ        | λ <sup>ı</sup> | $\lambda_N^2$ | $\lambda_{wtd}^{3}$           | $\lambda_{Nwtd}^{4}$ | $\Delta Z_i / \lambda$ | R <sub>i</sub>  | λ <sub>hi</sub> <sup>5</sup>      | grad <sub>i</sub>   | Q <sub>graph</sub> <sup>6</sup> | Q <sub>2</sub> <sup>7</sup> | <b>Q</b> <sub>N</sub> <sup>8</sup> | Q <sub>Bullard</sub> <sup>9</sup> | <b>Q</b> <sub>hi</sub> <sup>10</sup> |
|---------------------------------------------------|---------------------------------------------|--------------|--------------|-----------|----------------|---------------|-------------------------------|----------------------|------------------------|-----------------|-----------------------------------|---------------------|---------------------------------|-----------------------------|------------------------------------|-----------------------------------|--------------------------------------|
| Formation                                         | (n                                          | n)           | (°C          | .)        |                | Wm            | <sup>-1</sup> K <sup>-1</sup> |                      | w                      | K <sup>-1</sup> | W m <sup>-1</sup> K <sup>-1</sup> | °C km <sup>-1</sup> |                                 |                             | mW m <sup>-2</sup>                 |                                   |                                      |
| Foxhills                                          | 32.0                                        | 9.8          | 6.7          | 0.8       | 1.20           | 1.72          | 0.04                          | 0.07                 | 26.92                  | 26.92           |                                   |                     |                                 | 28.7                        | 41.1                               |                                   |                                      |
| Pierre                                            | 64.3                                        | 19.6         | 7.5          | 20.3      | 1.10           | 1.62          | 0.57                          | 0.88                 | 418.13                 | 445.05          | 0.14                              | 23.90               |                                 | 48.4                        | 71.3                               |                                   | 3.5                                  |
| Greenhorm                                         | 524.3                                       | 159.8        | 27.7         | 4.1       | 1.00           | 1.62          | 0.09                          | 0.15                 | 80.16                  | 525.22          | 1.00                              | 42.71               |                                 | 51.5                        | 83.4                               |                                   | 42.6                                 |
| Mowry                                             | 604.4                                       | 184.2        | 31.8         | 2.7       | 1.20           | 1.80          | 0.08                          | 0.13                 | 50.04                  | 575.25          | 1.05                              | 43.94               |                                 | 54.4                        | 81.6                               |                                   | 46.2                                 |
| Inyan Kara                                        | 664.5                                       | 202.5        | 34.6         | 1.7       | 1.60           | 2.35          | 0.14                          | 0.21                 | 48.01                  | 623.26          | 1.07                              | 44.07               |                                 | 34.7                        | 51.0                               |                                   | 47.0                                 |
| Swift                                             | 741.3                                       | 225.9        | 36.2         | 5.8       | 1.20           | 2.10          | 0.23                          | 0.43                 | 143.15                 | 766.41          | 0.97                              | 41.65               |                                 | 40.5                        | 70.8                               |                                   | 40.3                                 |
| вон                                               | 913.1                                       |              | 42.0         |           |                |               |                               |                      |                        |                 |                                   | 40.10               |                                 |                             |                                    |                                   |                                      |
|                                                   |                                             |              |              |           |                | Σ =           | 1.16                          | 1.86                 |                        |                 |                                   |                     |                                 |                             |                                    |                                   |                                      |
| Notes                                             |                                             |              |              |           |                |               |                               |                      |                        |                 | Average                           |                     |                                 | 43.0                        | 66.5                               | 47.5                              | 44                                   |
| 1 - Thermal conduct                               | ivity derived                               | from graph   | nical methoo | ł         |                |               |                               |                      |                        |                 | Wtd Averag                        | ge                  |                                 | 46.6                        | 75.6                               |                                   |                                      |
| 2 - Thermal conduct                               | ivity used by                               | Nordeng a    | nd Nesheim   | (2011) an | d Norden       | g (2014)      |                               |                      |                        |                 | Shallow                           |                     |                                 |                             |                                    | 48.4                              | 23.2                                 |
| 3 - Weighted averag                               | e of graphic                                | al thermal o | onductivity  |           |                |               |                               |                      |                        |                 | Deep                              |                     | 48                              |                             |                                    | 41.3                              | 44.5                                 |
| 4 - Weighted averag                               | e of Norden                                 | g's thermal  | conductivity | /         |                |               |                               |                      |                        |                 |                                   |                     |                                 |                             |                                    |                                   |                                      |
| 5 - Harmonic mean                                 | of thermal co                               | onductivity  |              |           |                |               |                               |                      |                        |                 |                                   |                     |                                 |                             |                                    |                                   |                                      |
| 6 - Heat flow derive                              | d from graph                                | nical metho  | d            |           |                |               |                               |                      |                        |                 |                                   |                     |                                 |                             |                                    |                                   |                                      |
| 7- Heat flow derived                              | l from Equat                                | ion 1 for ea | ch formatio  | n         |                |               |                               |                      |                        |                 |                                   |                     |                                 |                             |                                    |                                   |                                      |
| 8 - Heat Flow derive                              |                                             |              |              |           |                |               |                               |                      |                        |                 |                                   |                     |                                 |                             |                                    |                                   |                                      |
| 9 - Heat flow derive                              | 9 - Heat flow derived from Bullard's Method |              |              |           |                |               |                               |                      |                        |                 |                                   |                     |                                 |                             |                                    |                                   |                                      |
| 10 - Heat flow derived using harmonic mean method |                                             |              |              |           |                |               |                               |                      |                        |                 |                                   |                     |                                 |                             |                                    |                                   |                                      |

#### Summary of Heat Flow Calculations NDIC 8005 Sivertson 29-23R1 McKenzie County, ND

|                        | Depth (Z)                                                                       | Δz           | Temp (T)     | Δт         | $\lambda^1$ | $\lambda_N^2$ | $\lambda_{wtd}^{3}$             | $\lambda_{ m Nwtd}^{4}$ | Δz <sub>i</sub> /λ | R <sub>i</sub>  | λ <sub>hi</sub> 5                 | grad <sub>i</sub> | Q <sub>graph</sub> <sup>6</sup> | Q <sub>2</sub> <sup>7</sup> | <b>Q</b> <sub>N</sub> <sup>8</sup> | 9<br>Q <sub>Bullard</sub> | <b>Q</b> <sub>hi</sub> <sup>10</sup> |
|------------------------|---------------------------------------------------------------------------------|--------------|--------------|------------|-------------|---------------|---------------------------------|-------------------------|--------------------|-----------------|-----------------------------------|-------------------|---------------------------------|-----------------------------|------------------------------------|---------------------------|--------------------------------------|
| Formation              | (n                                                                              | n)           | (°C          | :)         |             | Wm            | 1 <sup>-1</sup> K <sup>-1</sup> |                         | w                  | K <sup>-1</sup> | W m <sup>-1</sup> K <sup>-1</sup> | °C km⁻¹           |                                 |                             | mW m <sup>-2</sup>                 |                           |                                      |
| FU/HC/FH <sup>11</sup> | 0.0                                                                             | 490.4        | -0.4         | 28.9       | 1.40        | 1.72          | 0.17                            | 0.21                    | 350.30             | 350.30          |                                   |                   |                                 | 82.5                        | 101.4                              |                           |                                      |
| Cretaceous Shale ?     | 490.4                                                                           | 900.4        | 28.5         | 46.9       | 1.15        | 1.62          | 0.26                            | 0.37                    | 782.94             | 1133.24         | 0.43                              | 58.93             |                                 | 60.0                        | 84.5                               |                           | 25.5                                 |
| Mowry                  | 1390.8                                                                          | 100.3        | 75.4         | 5.5        | 1.20        | 1.80          | 0.03                            | 0.05                    | 83.57              | 1216.81         | 1.14                              | 54.53             |                                 | 66.1                        | 99.2                               |                           | 62.3                                 |
| Inyan Kara             | 1491.1                                                                          | 136.6        | 80.9         | 4.1        | 1.60        | 2.35          | 0.06                            | 0.08                    | 85.34              | 1302.15         | 1.15                              | 54.57             |                                 | 47.8                        | 70.3                               |                           | 62.5                                 |
| Swift                  | 1627.6                                                                          | 135.3        | 85.0         | 5.7        | 1.50        | 2.10          | 0.05                            | 0.07                    | 90.22              | 1392.37         | 1.17                              | 52.50             |                                 | 62.7                        | 87.8                               |                           | 61.4                                 |
| Rierdon                | 1763.0                                                                          | 201.5        | 90.7         | 6.9        | 2.00        | 2.10          | 0.10                            | 0.11                    | 100.74             | 1493.11         | 1.18                              | 51.68             |                                 | 68.2                        | 71.6                               |                           | 61.0                                 |
| Spearfish              | 1964.4                                                                          | 118.9        | 97.6         | 2.3        | 2.40        | 2.10          | 0.07                            | 0.06                    | 49.53              | 1542.64         | 1.27                              | 49.88             |                                 | 47.2                        | 41.3                               |                           | 63.5                                 |
| Minnekahta             | 2083.3                                                                          | 10.4         | 99.9         | 0.2        | 2.40        | 3.04          | 0.01                            | 0.01                    | 4.32               | 1546.96         | 1.35                              | 48.15             |                                 | 37.3                        | 47.3                               |                           | 64.8                                 |
| Opeche                 | 2093.7                                                                          | 104.2        | 100.1        | 2.3        | 2.20        | 3.04          | 0.06                            | 0.08                    | 47.38              | 1594.34         | 1.31                              | 47.99             |                                 | 48.8                        | 67.4                               |                           | 63.0                                 |
| Broom Creek            | 2197.9                                                                          | 111.9        | 102.4        | 2.3        | 3.80        | 3.04          | 0.11                            | 0.09                    | 29.44              | 1623.78         | 1.35                              | 46.77             |                                 | 79.5                        | 63.6                               |                           | 63.3                                 |
| Tyler                  | 2309.8                                                                          | 170.4        | 104.7        | 7.3        | 1.60        | 2.68          | 0.07                            | 0.12                    | 106.49             | 1730.27         | 1.33                              | 45.51             |                                 | 68.3                        | 114.4                              |                           | 60.8                                 |
| Kibbey Lime            | 2480.2                                                                          | 41.1         | 112.0        | 0.7        | 2.70        | 3.62          | 0.03                            | 0.04                    | 15.24              | 1745.51         | 1.42                              | 45.32             |                                 | 46.3                        | 62.1                               |                           | 64.4                                 |
| Madison                | 2521.3                                                                          | 176.8        | 112.7        | 3.2        | 3.05        | 3.45          | 0.14                            | 0.15                    | 57.96              | 1803.47         | 1.40                              | 44.86             |                                 | 54.9                        | 62.1                               |                           | 62.7                                 |
| Ratcliffe              | 2698.1                                                                          | 18.6         | 115.9        | 0.4        | 3.05        | 3.45          | 0.01                            | 0.02                    | 6.10               | 1809.56         | 1.49                              | 43.10             |                                 | 60.1                        | 68.0                               |                           | 64.3                                 |
| Last Salt              | 2716.7                                                                          | 70.4         | 116.2        | 1.5        | 3.05        | 3.45          | 0.05                            | 0.06                    | 23.08              | 1832.65         | 1.48                              | 42.94             |                                 | 65.0                        | 73.5                               |                           | 63.7                                 |
| Frobisher-Alida        | 2787.1                                                                          | 171.6        | 117.7        | 4.1        | 3.05        | 3.45          | 0.13                            | 0.15                    | 56.26              | 1888.91         | 1.48                              | 42.39             |                                 | 72.9                        | 82.4                               |                           | 62.6                                 |
| Lodgepole              | 2958.7                                                                          | 264.3        | 121.8        | 7.9        | 2.00        | 3.45          | 0.13                            | 0.23                    | 132.13             | 2021.04         | 1.46                              | 41.32             |                                 | 60.0                        | 103.4                              |                           | 60.5                                 |
| Bakken                 | 3223.0                                                                          | 26.2         | 129.8        | 1.1        | 1.00        | 4.00          | 0.01                            | 0.03                    | 26.21              | 2047.25         | 1.57                              | 40.39             |                                 | 42.4                        | 169.6                              |                           | 63.6                                 |
| Three Forks            | 3249.2                                                                          | 64.0         | 130.9        | 1.9        | 2.70        | 4.00          | 0.04                            | 0.06                    | 23.71              | 2070.96         | 1.57                              | 40.41             |                                 | 78.8                        | 116.8                              |                           | 63.4                                 |
| Birdbear               | 3313.2                                                                          | 27.1         | 132.7        | 0.6        | 2.80        | 4.00          | 0.02                            | 0.03                    | 9.69               | 2080.65         | 1.59                              | 40.19             |                                 | 62.8                        | 89.8                               |                           | 64.0                                 |
| Duperow                | 3340.3                                                                          | 121.0        | 133.3        | 2.8        | 2.60        | 4.00          | 0.08                            | 0.12                    | 46.54              | 2127.19         | 1.57                              | 40.05             |                                 | 59.3                        | 91.3                               |                           | 62.9                                 |
| Souris River           | 3461.3                                                                          | 83.5         | 136.1        | 2.1        | 2.80        | 3.09          | 0.06                            | 0.07                    | 29.83              | 2157.02         | 1.60                              | 39.44             |                                 | 70.8                        | 78.1                               |                           | 63.3                                 |
| Dawson Bay             | 3544.8                                                                          | 36.6         | 138.2        | 0.9        | 2.75        | 3.09          | 0.03                            | 0.03                    | 13.30              | 2170.32         | 1.63                              | 39.11             |                                 | 68.9                        | 77.4                               |                           | 63.9                                 |
| Prairie                | 3581.4                                                                          | 46.0         | 139.1        | 0.8        | 4.00        | 2.18          | 0.05                            | 0.03                    | 11.51              | 2181.82         | 1.64                              | 38.97             |                                 | 66.1                        | 36.1                               |                           | 64.0                                 |
| Winnipegosis           | 3627.4                                                                          | 125.0        | 139.9        | 3.0        | 2.60        | 2.83          | 0.08                            | 0.09                    | 48.06              | 2229.89         | 1.63                              | 38.68             |                                 | 62.2                        | 67.7                               |                           | 62.9                                 |
| Interlake              | 3752.4                                                                          | 208.7        | 142.9        | 4.35       | 3.77        | 3.72          | 0.19863                         | 0.19599                 | 55.3564            | 2285.24         | 1.64                              | 38.19             |                                 | 78.5817                     | 77.5395                            |                           | 62.7091                              |
| вон                    | 3961.1                                                                          |              | 147.2        |            |             |               |                                 |                         |                    |                 |                                   |                   |                                 |                             |                                    |                           |                                      |
|                        |                                                                                 |              |              |            |             | $\Sigma =$    | 2.04                            | 2.53                    |                    |                 |                                   |                   |                                 |                             |                                    |                           |                                      |
| Notes                  |                                                                                 |              |              |            |             |               |                                 |                         |                    |                 | Average                           |                   |                                 | 62.2                        | 80.9                               | 61.3                      | 61.5                                 |
| 1 - Thermal conduct    | tivity derive                                                                   | d from grap  | hical metho  | bd         |             |               |                                 |                         |                    |                 | Wtd Averag                        | ge                |                                 | 76.2                        | 94.4                               |                           |                                      |
| 2 - Thermal conduct    | tivity used b                                                                   | y Nordeng    | and Nesheii  | m (2011) a | and Norde   | eng (2014     | .)                              |                         |                    |                 | Shallow                           |                   |                                 |                             |                                    | 60.0                      | 43.9                                 |
| 3 - Weighted average   | ge of graphic                                                                   | cal thermal  | conductivit  | у          |             |               |                                 |                         |                    |                 | Deep                              |                   | 61                              |                             |                                    | 62.1                      | 63.0                                 |
| 4 - Weighted average   | ge of Norder                                                                    | ng's therma  | l conductivi | ty         |             |               |                                 |                         |                    |                 |                                   |                   |                                 |                             |                                    |                           |                                      |
| 5 - Harmonic mean      | of thermal of                                                                   | conductivity | /            |            |             |               |                                 |                         |                    |                 |                                   |                   |                                 |                             |                                    |                           |                                      |
| 6 - Heat flow derive   | d from grap                                                                     | hical metho  | bd           |            |             |               |                                 |                         |                    |                 |                                   |                   |                                 |                             |                                    |                           |                                      |
| 7- Heat flow derived   | t flow derived from Equation 1 for each formation                               |              |              |            |             |               |                                 |                         |                    |                 |                                   |                   |                                 |                             |                                    |                           |                                      |
| 8 - Heat Flow derive   | ed from Equ                                                                     | ation 1 and  | Nordengs 7   | L          |             |               |                                 |                         |                    |                 |                                   |                   |                                 |                             |                                    |                           |                                      |
| 9 - Heat flow derive   | d from Bulla                                                                    | ard's Metho  | d            |            |             |               |                                 |                         |                    |                 |                                   |                   |                                 |                             |                                    |                           |                                      |
| 10 - Heat flow deriv   | ed using ha                                                                     | rmonic mea   | an method    |            |             |               |                                 |                         |                    |                 |                                   |                   |                                 |                             |                                    |                           |                                      |
| 11- FU/HC/FH - Fort    | · FU/HC/FH - Fort Union Group/Hell Creek Formation/Fox Hills Formation combined |              |              |            |             |               |                                 |                         |                    |                 |                                   |                   |                                 |                             |                                    |                           |                                      |

## Summary of Heat Flow Calculations NDIC8706 Berge C-1 McKenzie County, ND

|                          | Donth (7)                                                                                                                                               | 47          | Tomp (T)   | ۸T       | <b>a</b> 1 | a 2            | <sub>م</sub> ع                  | <b>2</b> 4        | 47 ()          |         | <u>ک</u>                          | awa d             | <b>0</b> 6     | 07             | 0 <sup>8</sup>    | <b>0</b> 9                  | 0 10            |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|----------|------------|----------------|---------------------------------|-------------------|----------------|---------|-----------------------------------|-------------------|----------------|----------------|-------------------|-----------------------------|-----------------|
|                          | Deptil (2)                                                                                                                                              |             | Temp (T)   | Δι       | ~          | ۸ <sub>N</sub> | ∧ <sub>wtd</sub>                | ∧ <sub>Nwtd</sub> | Δ <b>Ζ</b> į/Λ | 1 Ki    | Λ <sub>hi</sub>                   | grad <sub>i</sub> | <b>Q</b> graph | Q <sub>2</sub> | U <sub>N</sub>    | <b>Q</b> <sub>Bullard</sub> | Q <sub>hi</sub> |
| Formation                | (r                                                                                                                                                      | n)          | (°C        | )        |            | Wm             | n <sup>-1</sup> K <sup>-1</sup> |                   | W              | K_      | W m <sup>-1</sup> K <sup>-1</sup> | °C km⁻¹           |                |                | mW m <sup>-</sup> |                             |                 |
| Till                     | 0.0                                                                                                                                                     | 2.4         | 8.0        | 0.1      | 1.20       | 1.72           | 0.00                            | 0.00              | 2.03           | 2.03    |                                   |                   |                | 44.3           | 63.5              |                             |                 |
| FU/HC/FH <sup>11</sup>   | 2.4                                                                                                                                                     | 598.3       | 8.1        | 22.9     | 1.25       | 1.72           | 0.27                            | 0.38              | 478.66         | 480.69  | 0.01                              | 36.91             |                | 47.9           | 65.9              |                             | 0.2             |
| Pierre                   | 600.8                                                                                                                                                   | 845.8       | 31.0       | 40.6     | 1.10       | 1.62           | 0.34                            | 0.50              | 768.93         | 1249.62 | 0.48                              | 38.32             |                | 52.9           | 77.8              |                             | 18.4            |
| Greenhorn                | 1446.6                                                                                                                                                  | 122.2       | 71.6       | 7.1      | 1.00       | 1.62           | 0.04                            | 0.07              | 122.22         | 1371.84 | 1.05                              | 44.01             |                | 58.0           | 94.0              |                             | 46.4            |
| Mowry                    | 1568.8                                                                                                                                                  | 44.5        | 78.7       | 2.2      | 1.10       | 1.80           | 0.02                            | 0.03              | 40.46          | 1412.30 | 1.11                              | 45.10             |                | 54.1           | 88.6              |                             | 50.1            |
| Newcastle                | 1613.3                                                                                                                                                  | 66.4        | 80.9       | 3.3      | 1.10       | 1.80           | 0.03                            | 0.04              | 60.41          | 1472.70 | 1.10                              | 45.21             |                | 54.0           | 88.3              |                             | 49.5            |
| Inyan Kara               | 1679.8                                                                                                                                                  | 137.8       | 84.2       | 3.7      | 1.40       | 2.35           | 0.07                            | 0.12              | 98.41          | 1571.11 | 1.07                              | 45.36             |                | 37.4           | 62.8              |                             | 48.5            |
| Swift                    | 1817.5                                                                                                                                                  | 142.0       | 87.9       | 5.6      | 1.20       | 2.10           | 0.06                            | 0.11              | 118.36         | 1689.47 | 1.08                              | 43.95             |                | 47.0           | 82.2              |                             | 47.3            |
| Rierdon                  | 1959.6                                                                                                                                                  | 191.4       | 93.4       | 6.3      | 1.70       | 2.10           | 0.12                            | 0.15              | 112.60         | 1802.07 | 1.09                              | 43.60             |                | 56.0           | 69.2              |                             | 47.4            |
| Spearfish                | 2151.0                                                                                                                                                  | 137.2       | 99.7       | 2.7      | 1.80       | 3.04           | 0.09                            | 0.15              | 76.20          | 1878.27 | 1.15                              | 42.66             |                | 35.3           | 59.6              |                             | 48.8            |
| Minnekahta/Opeche        | 2288.1                                                                                                                                                  | 82.6        | 102.4      | 1.6      | 3.20       | 3.04           | 0.10                            | 0.09              | 25.81          | 1904.08 | 1.20                              | 41.27             |                | 62.0           | 58.9              |                             | 49.6            |
| Broom Creek              | 2370.7                                                                                                                                                  | 71.3        | 104.0      | 1.5      | 2.90       | 3.04           | 0.08                            | 0.08              | 24.59          | 1928.68 | 1.23                              | 40.51             |                | 60.2           | 63.1              |                             | 49.8            |
| Tyler                    | 2442.1                                                                                                                                                  | 26.8        | 105.5      | 1.2      | 1.40       | 2.68           | 0.01                            | 0.03              | 19.16          | 1947.84 | 1.25                              | 39.93             |                | 64.2           | 122.9             |                             | 50.1            |
| Big Snowy                | 2468.9                                                                                                                                                  | 146.9       | 106.7      | 5.1      | 1.50       | 3.62           | 0.08                            | 0.19              | 97.94          | 2045.78 | 1.21                              | 40.00             |                | 51.9           | 125.2             |                             | 48.3            |
| Kibbey Lime              | 2615.8                                                                                                                                                  | 39.3        | 111.8      | 0.8      | 2.80       | 3.62           | 0.04                            | 0.05              | 14.04          | 2059.82 | 1.27                              | 39.69             |                | 54.1           | 70.0              |                             | 50.4            |
| Madison                  | 2655.1                                                                                                                                                  | 87.4        | 112.6      | 1.2      | 3.20       | 3.45           | 0.10                            | 0.11              | 27.31          | 2087.13 | 1.27                              | 39.39             |                | 44.3           | 47.8              |                             | 50.1            |
| вон                      | 2742.5                                                                                                                                                  |             | 113.8      |          |            |                |                                 |                   |                |         | 1.46                              | 41.32             |                |                |                   |                             | 60.5            |
|                          |                                                                                                                                                         |             |            |          |            |                |                                 |                   |                |         |                                   |                   |                |                |                   |                             |                 |
|                          |                                                                                                                                                         |             |            |          |            | $\Sigma =$     | 1.45                            | 2.10              |                |         |                                   |                   |                |                |                   |                             |                 |
| Notes                    |                                                                                                                                                         |             |            |          |            |                |                                 |                   |                |         | Average                           |                   |                | 51.5           | 77.5              | 50.8                        | 46.7673         |
| 1 - Thermal conductivit  | y derived fro                                                                                                                                           | om graphica | al method  |          |            |                |                                 |                   |                |         | Wtd Avera                         | ge                |                | 56.0           | 81.0              |                             | [               |
| 2 - Thermal conductivit  | y used by N                                                                                                                                             | ordeng and  | Nesheim (2 | 011) and | Nordeng (  | (2014)         |                                 |                   |                |         | Shallow                           | -                 |                |                |                   | 47.9                        | 32.4            |
| 3 - Weighted average o   | f graphical t                                                                                                                                           | hermal con  | ductivity  |          |            |                |                                 |                   |                |         | Deep                              |                   | 52             |                |                   | 49.1                        | 48.9            |
| 4 - Weighted average o   | f Nordeng's                                                                                                                                             | thermal co  | nductivity |          |            |                |                                 |                   |                |         |                                   |                   |                |                |                   |                             |                 |
| 5 - Harmonic mean of t   | hermal cond                                                                                                                                             | ductivity   |            |          |            |                |                                 |                   |                |         |                                   |                   |                |                |                   |                             |                 |
| 6 - Heat flow derived fr | om graphica                                                                                                                                             | al method   |            |          |            |                |                                 |                   |                |         |                                   |                   |                |                |                   |                             |                 |
| 7- Heat flow derived fro | om Equation                                                                                                                                             | 1 for each  | formation  |          |            |                |                                 |                   |                |         |                                   |                   |                |                |                   |                             |                 |
| 8 - Heat Flow derived fi | om Equatio                                                                                                                                              | n 1 and No  | rdengs λ   |          |            |                |                                 |                   |                |         |                                   |                   |                |                |                   |                             |                 |
| 9 - Heat flow derived fr | om Bullard's                                                                                                                                            | s Method    | -          |          |            |                |                                 |                   |                |         |                                   |                   |                |                |                   |                             |                 |
| 10 - Heat flow derived   |                                                                                                                                                         |             |            |          |            |                |                                 |                   |                |         |                                   |                   |                |                |                   |                             |                 |
| 11- FU/HC/FH - Fort Un   | <ul> <li>Heat flow derived using harmonic mean method</li> <li>FU/HC/FH - Fort Union Group/Hell Creek Formation/Fox Hills Formation combined</li> </ul> |             |            |          |            |                |                                 |                   |                |         |                                   |                   |                |                |                   |                             |                 |

## Summary of Heat Flow Calculations NDIC 9653 Cutlip 1 McKenzie County, ND

|                        | Depth (Z)     | Δz             | Temp (T)           | Δτ          | $\lambda^1$ | λ, <sup>2</sup> | $\lambda_{\rm wtd}^{3}$         | $\lambda_{Nwtd}^4$ | ΔZ;/λ  | R;              | λ <sub>bi</sub> 5                 | grad,               | Q <sub>graph</sub> <sup>6</sup> | Q <sub>2</sub> <sup>7</sup> | Q <sub>N</sub> <sup>8</sup> | Q <sub>Bullard</sub> 9 | Q, <sup>10</sup> |
|------------------------|---------------|----------------|--------------------|-------------|-------------|-----------------|---------------------------------|--------------------|--------|-----------------|-----------------------------------|---------------------|---------------------------------|-----------------------------|-----------------------------|------------------------|------------------|
| Formation              | (r            | m)             | (°C                | 2)          |             | Wm              | n <sup>-1</sup> K <sup>-1</sup> | 11014              | w      | к <sup>-1</sup> | W m <sup>-1</sup> K <sup>-1</sup> | °C km <sup>-1</sup> | Brahn                           | -                           | mW m <sup>-2</sup>          | buildru                | -11              |
| FU/HC/FH <sup>11</sup> | 73.8          | 524.3          | 11.0               | . 17.3      | 1.40        | 1.72            | 0.26                            | 0.32               | 374.47 | 374.47          |                                   |                     |                                 | 82.5                        | 101.4                       |                        |                  |
| Pierre                 | 598.0         | 774.5          | 28.3               | 33.4        | 1.10        | 1.62            | 0.30                            | 0.45               | 704.09 | 1078.56         | 0.55                              | 33.01               |                                 | 60.0                        | 84.5                        |                        | 25.5             |
| Niobrara               | 1372.5        | 51.8           | 61.7               | 2.8         | 1.20        | 1.62            | 0.02                            | 0.03               | 43.18  | 1121.74         | 1.22                              | 39.03               |                                 | 66.1                        | 99.2                        |                        | 62.3             |
| Greenhorn              | 1424.3        | 123.7          | 64.4               | 7.1         | 1.00        | 1.62            | 0.04                            | 0.07               | 123.75 | 1245.49         | 1.14                              | 39.58               |                                 | 47.8                        | 70.3                        |                        | 62.5             |
| Mowry                  | 1548.1        | 113.7          | 71.5               | 5.4         | 1.00        | 1.80            | 0.04                            | 0.07               | 113.69 | 1359.18         | 1.14                              | 41.04               |                                 | 62.7                        | 87.8                        |                        | 61.4             |
| Inyan Kara             | 1661.8        | 152.4          | 76.9               | 4.1         | 1.50        | 2.35            | 0.08                            | 0.13               | 101.60 | 1460.78         | 1.14                              | 41.51               |                                 | 68.2                        | 71.6                        |                        | 61.0             |
| Swift                  | 1814.2        | 162.2          | 80.9               | 6.3         | 1.20        | 2.10            | 0.07                            | 0.12               | 135.13 | 1595.90         | 1.14                              | 40.20               |                                 | 47.2                        | 41.3                        |                        | 63.5             |
| Rierdon                | 1976.3        | 168.9          | 87.2               | 5.7         | 1.60        | 2.10            | 0.10                            | 0.13               | 105.54 | 1701.44         | 1.16                              | 40.07               |                                 | 37.3                        | 47.3                        |                        | 64.8             |
| Spearfish              | 2145.2        | 110.6          | 92.9               | 2.2         | 1.80        | 3.04            | 0.07                            | 0.12               | 61.47  | 1762.91         | 1.22                              | 39.55               |                                 | 48.8                        | 67.4                        |                        | 63.0             |
| Minnekahta             | 2255.8        | 8.2            | 95.1               | 0.2         | 2.60        | 3.04            | 0.01                            | 0.01               | 3.17   | 1766.07         | 1.28                              | 38.53               |                                 | 79.5                        | 63.6                        |                        | 63.3             |
| Opeche                 | 2264.1        | 71.9           | 95.2               | 1.4         | 1.70        | 3.04            | 0.04                            | 0.08               | 42.31  | 1808.39         | 1.25                              | 38.46               |                                 | 68.3                        | 114.4                       |                        | 60.8             |
| Broom Creek            | 2336.0        | 0.0            | 96.6               | 1.8         | 2.40        | 3.04            | 0.07                            | 0.09               | 33.27  | 1841.66         | 1.27                              | 37.86               |                                 | 46.3                        | 62.1                        |                        | 64.4             |
| Tyler                  | 2336.0        | 79.9           | 98.4               | 2.8         | 1.20        | 2.68            | 0.02                            | 0.05               | 40.39  | 1882.05         | 1.28                              | 37.32               |                                 | 54.9                        | 62.1                        |                        | 62.7             |
| Big Snowy              | 2415.8        | 48.5           | 101.2              | 3.0         | 1.50        | 3.62            | 0.06                            | 0.14               | 72.34  | 1954.39         | 1.26                              | 37.72               |                                 | 60.1                        | 68.0                        |                        | 64.3             |
| Kibbey Lime            | 2464.3        | 152.4          | 104.1              | 0.8         | 2.80        | 3.62            | 0.04                            | 0.06               | 15.68  | 1970.06         | 1.31                              | 37.27               |                                 | 65.0                        | 73.5                        |                        | 63.7             |
| Madison                | 2616.7        | 177.4          | 104.9              | 2.8         | 3.20        | 3.45            | 0.20                            | 0.22               | 55.44  | 2025.50         | 1.29                              | 36.95               |                                 | 72.9                        | 82.4                        |                        | 62.6             |
| Ratcliffe              | 2794.1        | 23.5           | 107.7              | 0.4         | 3.05        | 3.45            | 0.03                            | 0.03               | 7.69   | 2033.19         | 1.37                              | 35.56               |                                 | 60.0                        | 103.4                       |                        | 60.5             |
| Last Salt              | 2817.6        | 15.8           | 108.1              | 0.3         | 2.80        | 3.45            | 0.02                            | 0.02               | 5.63   | 2038.82         | 1.38                              | 35.40               |                                 | 42.4                        | 169.6                       |                        | 63.6             |
| вон                    | 2833.3        |                | 108.4              |             |             |                 |                                 |                    |        |                 |                                   |                     |                                 |                             |                             |                        |                  |
|                        |               |                |                    |             |             |                 |                                 |                    |        |                 |                                   |                     |                                 |                             |                             |                        |                  |
|                        |               |                |                    |             |             | Σ =             | 1.47                            | 2.11               |        |                 |                                   |                     |                                 |                             |                             |                        |                  |
| Notes                  |               |                |                    |             |             |                 |                                 |                    |        |                 | Average                           |                     |                                 | 49.3                        | 75.4                        | 47.9                   | 45.9246          |
| 1 - Thermal conduct    | ivity derive  | d from grap    | hical metho        | d           |             |                 |                                 |                    |        |                 | Wtd Averag                        | ge                  |                                 | 52.0                        | 74.8                        |                        |                  |
| 2 - Thermal conduct    | tivity used b | y Nordeng      | and Nesheir        | n (2011) a  | nd Norde    | ng (2014)       |                                 |                    |        |                 | Shallow                           |                     |                                 |                             |                             | 47.4                   | 33.0             |
| 3 - Weighted average   | ge of graphio | cal thermal    | conductivity       | /           |             |                 |                                 |                    |        |                 | Deep                              |                     | 48                              |                             |                             | 47                     | 47.6             |
| 4 - Weighted average   | ge of Norder  | ng's therma    | l conductivi       | ty          |             |                 |                                 |                    |        |                 |                                   |                     |                                 |                             |                             |                        |                  |
| 5 - Harmonic mean      | of thermal of | conductivity   | 1                  |             |             |                 |                                 |                    |        |                 |                                   |                     |                                 |                             |                             |                        |                  |
| 6 - Heat flow derive   | d from grap   | hical metho    | bd                 |             |             |                 |                                 |                    |        |                 |                                   |                     |                                 |                             |                             |                        |                  |
| 7- Heat flow derived   | d from Equa   | ition 1 for ea | ach formatio       | on          |             |                 |                                 |                    |        |                 |                                   |                     |                                 |                             |                             |                        |                  |
| 8 - Heat Flow derive   | ed from Equ   | ation 1 and    | Nordengs $\lambda$ |             |             |                 |                                 |                    |        |                 |                                   |                     |                                 |                             |                             |                        |                  |
| 9 - Heat flow derive   | d from Bulla  | ard's Metho    |                    |             |             |                 |                                 |                    |        |                 |                                   |                     |                                 |                             |                             |                        |                  |
| 10 - Heat flow deriv   | ed using ha   | rmonic mea     | in method          |             |             |                 |                                 |                    |        |                 |                                   |                     |                                 |                             |                             |                        |                  |
| 11- FU/HC/FH - Fort    | Union Grou    | up/Hell Cree   | ek Formatio        | n/Fox Hills | Formatic    | on combin       | ed                              |                    |        |                 |                                   |                     |                                 |                             |                             |                        |                  |

## Summary of Heat Flow Calculations NDIC 10103 Iverson State A-1 McKenzie County, ND

|                        | Depth (Z)                                   | ΔZ            | Temp (T)     | ΔΤ          | $\lambda^1$ | $\lambda_N^2$ | $\lambda_{wtd}^{3}$           | $\lambda_{Nwtd}^{4}$ | ΔZ <sub>i</sub> /λ | R <sub>i</sub>  | λ <sub>hi</sub> <sup>5</sup>      | grad <sub>i</sub>   | Q <sub>graph</sub> <sup>6</sup> | Q <sub>2</sub> <sup>7</sup> | Q <sub>N</sub> <sup>8</sup> | Q <sub>Bullard</sub> 9 | Q <sub>hi</sub> <sup>10</sup> |
|------------------------|---------------------------------------------|---------------|--------------|-------------|-------------|---------------|-------------------------------|----------------------|--------------------|-----------------|-----------------------------------|---------------------|---------------------------------|-----------------------------|-----------------------------|------------------------|-------------------------------|
| Formation              | (n                                          | n)            | (°(          | C)          |             | Wm            | <sup>-1</sup> K <sup>-1</sup> |                      | w                  | K <sup>-1</sup> | W m <sup>-1</sup> K <sup>-1</sup> | °C km <sup>-1</sup> |                                 |                             | mW m <sup>-2</sup>          |                        |                               |
| FU/HC/FH <sup>11</sup> | 27.7                                        | 555.7         | 8.8          | 19.2        | 1.40        | 1.72          | 0.29                          | 0.36                 | 636.81             | 636.81          |                                   |                     |                                 | 48.3                        | 59.3                        |                        |                               |
| Pierre                 | 583.4                                       | 847.3         | 28.0         | 37.7        | 1.40        | 1.62          | 0.45                          | 0.52                 | 368.81             | 1005.62         | 0.91                              | 36.98               |                                 | 62.3                        | 72.0                        |                        | 33.8                          |
| Greenhorn              | 1430.7                                      | 121.3         | 65.6         | 7.1         | 1.20        | 1.62          | 0.05                          | 0.07                 | 98.04              | 1103.67         | 1.30                              | 40.58               |                                 | 70.6                        | 95.3                        |                        | 52.8                          |
| Mowry                  | 1552.0                                      | 50.9          | 72.8         | 2.4         | 1.00        | 1.80          | 0.02                          | 0.03                 | 47.24              | 1150.91         | 1.35                              | 41.96               |                                 | 47.4                        | 85.3                        |                        | 56.6                          |
| Newcastle              | 1602.9                                      | 107.9         | 75.2         | 5.5         | 1.00        | 1.80          | 0.04                          | 0.07                 | 59.74              | 1210.65         | 1.32                              | 42.16               |                                 | 51.3                        | 92.4                        |                        | 55.7                          |
| Inyan Kara             | 1710.8                                      | 113.1         | 80.7         | 1.7         | 1.40        | 2.35          | 0.06                          | 0.10                 | 33.31              | 1243.96         | 1.33                              | 42.44               |                                 | 21.2                        | 35.6                        |                        | 56.6                          |
| Swift                  | 1823.9                                      | 167.9         | 82.4         | 6.4         | 1.50        | 2.10          | 0.10                          | 0.13                 | 145.29             | 1389.25         | 1.23                              | 42.78               |                                 | 56.8                        | 79.5                        |                        | 52.6                          |
| Rierdon                | 1991.9                                      | 160.6         | 88.8         | 5.9         | 1.50        | 2.10          | 0.09                          | 0.13                 | 150.57             | 1539.82         | 1.25                              | 40.75               |                                 | 55.1                        | 77.1                        |                        | 50.9                          |
| Spearfish              | 2152.5                                      | 107.6         | 94.7         | 2.1         | 1.30        | 3.04          | 0.05                          | 0.12                 | 82.53              | 1622.35         | 1.33                              | 40.45               |                                 | 25.8                        | 60.3                        |                        | 53.6                          |
| Minnehahta             | 2260.1                                      | 10.7          | 96.8         | 0.3         | 1.80        | 3.04          | 0.01                          | 0.01                 | 5.93               | 1628.28         | 1.39                              | 39.48               |                                 | 44.1                        | 74.4                        |                        | 54.7                          |
| Opeche                 | 2270.8                                      | 58.8          | 97.1         | 1.2         | 2.40        | 3.04          | 0.05                          | 0.07                 | 19.81              | 1648.09         | 1.38                              | 39.39               |                                 | 49.2                        | 62.3                        |                        | 54.2                          |
| Broom Creek            | 2329.6                                      | 92.4          | 98.3         | 2.1         | 2.80        | 3.04          | 0.10                          | 0.11                 | 31.90              | 1679.98         | 1.38                              | 38.90               |                                 | 62.5                        | 67.8                        |                        | 53.6                          |
| Tyler                  | 2421.9                                      | 31.7          | 100.3        | 1.7         | 1.40        | 2.68          | 0.02                          | 0.03                 | 35.71              | 1715.69         | 1.40                              | 38.31               |                                 | 75.6                        | 144.7                       |                        | 53.7                          |
| Big Snowy              | 2453.6                                      | 110.6         | 102.1        | 3.3         | 1.70        | 3.62          | 0.07                          | 0.15                 | 66.88              | 1782.57         | 1.38                              | 38.47               |                                 | 50.9                        | 108.3                       |                        | 53.0                          |
| Kibbey Lime            | 2564.3                                      | 43.0          | 105.4        | 0.8         | 2.30        | 3.62          | 0.04                          | 0.06                 | 18.16              | 1800.72         | 1.43                              | 38.04               |                                 | 42.2                        | 66.4                        |                        | 54.3                          |
| Madison                | 2607.3                                      | 43.2          | 106.2        | 0.5         | 3.10        | 3.45          | 0.05                          | 0.06                 | 12.74              | 1813.47         | 1.44                              | 37.71               |                                 | 35.9                        | 40.0                        |                        | 54.3                          |
| вон                    | 2650.4                                      |               | 106.7        |             |             |               |                               |                      |                    |                 |                                   |                     |                                 |                             |                             |                        |                               |
|                        |                                             |               |              |             |             | Σ =           | 1.49                          | 2.03                 |                    |                 |                                   |                     |                                 |                             |                             |                        |                               |
| Notes                  |                                             |               |              |             |             |               |                               |                      |                    |                 | Average                           |                     |                                 | 49.9                        | 76.3                        | 52.1                   | 52.7                          |
| 1 - Thermal conduct    | tivity derived                              | l from grap   | hical metho  | d           |             |               |                               |                      |                    |                 | Wtd Avera                         | ge                  |                                 | 54.9                        | 74.9                        |                        |                               |
| 2 - Thermal conduct    | tivity used by                              | y Nordeng a   | and Nesheir  | n (2011) ai | nd Norde    | ng (2014)     |                               |                      |                    |                 | Shallow                           |                     | 45.2                            |                             |                             | 65.5                   | 43.3                          |
| 3 - Weighted average   | ge of graphic                               | al thermal    | conductivity | Y           |             |               |                               |                      |                    |                 | Deep                              |                     | 50.2                            |                             |                             | 47                     | 54.2                          |
| 4 - Weighted average   | ge of Norden                                | ig's therma   | l conductivi | ty          |             |               |                               |                      |                    |                 |                                   |                     |                                 |                             |                             |                        |                               |
| 5 - Harmonic mean      | of thermal c                                | onductivity   | 1            |             |             |               |                               |                      |                    |                 |                                   |                     |                                 |                             |                             |                        |                               |
| 6 - Heat flow derive   | d from grapl                                | hical metho   | bd           |             |             |               |                               |                      |                    |                 |                                   |                     |                                 |                             |                             |                        |                               |
| 7- Heat flow derived   | d from Equat                                | tion 1 for ea | ach formatio | on          |             |               |                               |                      |                    |                 |                                   |                     |                                 |                             |                             |                        |                               |
| 8 - Heat Flow derive   |                                             |               |              |             |             |               |                               |                      |                    |                 |                                   |                     |                                 |                             |                             |                        |                               |
| 9 - Heat flow derive   | 9 - Heat flow derived from Bullard's Method |               |              |             |             |               |                               |                      |                    |                 |                                   |                     |                                 |                             |                             |                        |                               |
| 10 - Heat flow deriv   | ed using har                                | monic mea     | in method    |             |             |               |                               |                      |                    |                 |                                   |                     |                                 |                             |                             | İ                      |                               |
| 11- FU/HC/FH - Fort    | Union Grou                                  | p/Hell Cree   | ek Formatio  | n/Fox Hills | Formatic    | n combin      | ed                            |                      |                    |                 |                                   |                     |                                 |                             |                             | İ                      |                               |

## Summary of Heat Flow Calculations NDIC 10278 Mud Buttes 1-36 Bowman County, ND

|                                                   | Depth (Z)      | Δz           | Temp (T)           | Δτ          | $\lambda^1$ | λ. <sup>2</sup> | $\lambda_{\rm wtd}^{3}$         | $\lambda_{Nwtd}^4$ | ΔZ:/λ  | R:              | λ. <sup>5</sup>                   | grad.               | Q <sub>araph</sub> <sup>6</sup> | Q <sub>2</sub> <sup>7</sup> | Q., <sup>8</sup>   | Q <sub>Bullord</sub> <sup>9</sup> | <b>Q</b> <sub>bi</sub> <sup>10</sup> |
|---------------------------------------------------|----------------|--------------|--------------------|-------------|-------------|-----------------|---------------------------------|--------------------|--------|-----------------|-----------------------------------|---------------------|---------------------------------|-----------------------------|--------------------|-----------------------------------|--------------------------------------|
| Formation                                         | (m             | n)           | (°C                | :)          |             | Wm              | 1 <sup>-1</sup> K <sup>-1</sup> | Itwid              | W      | K <sup>-1</sup> | W m <sup>-1</sup> K <sup>-1</sup> | °C km <sup>-1</sup> | Brahn                           | ~2                          | mW m <sup>-2</sup> | Juliaru                           |                                      |
| FU/HC/FH <sup>11</sup>                            | 7.8            | 809.7        | 9.4                | 35.9        | 1.10        | 1.72            | 0.34                            | 0.54               | 736.10 | 736.10          |                                   |                     |                                 | 48.8                        | 76.3               |                                   |                                      |
| Pierre                                            | 817.5          | 245.4        | 45.3               | 11.4        | 1.10        | 1.62            | 0.10                            | 0.15               | 223.06 | 959.16          | 0.85                              | 44.34               |                                 | 51.0                        | 75.1               |                                   | 37.8                                 |
| Green Horn                                        | 1062.8         | 185.0        | 56.7               | 10.2        | 1.00        | 1.62            | 0.07                            | 0.12               | 185.01 | 1144.18         | 0.93                              | 44.81               |                                 | 54.9                        | 88.9               |                                   | 41.6                                 |
| Mowry                                             | 1247.9         | 129.8        | 66.8               | 7.2         | 1.10        | 1.80            | 0.06                            | 0.09               | 118.04 | 1262.22         | 0.99                              | 46.31               |                                 | 61.1                        | 100.0              |                                   | 45.8                                 |
| Inyan Kara                                        | 1377.7         | 133.2        | 74.1               | 3.8         | 1.60        | 2.35            | 0.08                            | 0.12               | 83.25  | 1345.46         | 1.02                              | 47.18               |                                 | 45.8                        | 67.2               |                                   | 48.3                                 |
| Swift                                             | 1510.9         | 137.8        | 77.9               | 4.9         | 1.30        | 2.10            | 0.07                            | 0.11               | 105.98 | 1451.44         | 1.04                              | 45.54               |                                 | 46.4                        | 75.0               |                                   | 47.4                                 |
| Rierdon                                           | 1648.7         | 115.8        | 82.8               | 3.3         | 1.80        | 2.10            | 0.08                            | 0.09               | 64.35  | 1515.79         | 1.09                              | 44.71               |                                 | 51.1                        | 59.7               |                                   | 48.6                                 |
| Spearfish                                         | 1764.5         | 134.1        | 86.1               | 3.1         | 2.20        | 3.04            | 0.11                            | 0.16               | 60.96  | 1576.75         | 1.12                              | 43.64               |                                 | 50.4                        | 69.6               |                                   | 48.8                                 |
| Broom Creek                                       | 1898.6         | 127.7        | 89.1               | 2.3         | 2.40        | 3.04            | 0.12                            | 0.15               | 53.21  | 1629.96         | 1.16                              | 42.17               |                                 | 43.2                        | 54.7               |                                   | 49.1                                 |
| Big Snowy                                         | 2026.3         | 41.5         | 91.4               | 1.2         | 1.60        | 3.62            | 0.03                            | 0.06               | 25.91  | 1655.87         | 1.22                              | 40.64               |                                 | 45.9                        | 103.9              |                                   | 49.7                                 |
| Kibbey                                            | 2067.8         | 34.1         | 92.6               | 0.7         | 2.80        | 3.62            | 0.04                            | 0.05               | 12.19  | 1668.06         | 1.24                              | 40.40               |                                 | 55.8                        | 72.1               |                                   | 50.1                                 |
| Madison                                           | 2101.9         | 51.8         | 93.3               | 1.1         | 2.90        | 3.45            | 0.06                            | 0.07               | 17.87  | 1685.93         | 1.25                              | 40.06               |                                 | 62.1                        | 73.9               |                                   | 49.9                                 |
| Ratcliffe                                         | 2153.7         | 189.3        | 94.4               | 4.1         | 2.80        | 3.45            | 0.20                            | 0.25               | 67.60  | 1753.53         | 1.23                              | 39.61               |                                 | 61.4                        | 75.6               |                                   | 48.7                                 |
| Lodgepole                                         | 2343.0         | 157.9        | 98.6               | 3.6         | 2.50        | 3.45            | 0.15                            | 0.21               | 63.15  | 1816.68         | 1.29                              | 38.18               |                                 | 57.6                        | 79.5               |                                   | 49.2                                 |
| Devonian Undiff.                                  | 2500.9         | 62.2         | 102.2              | 1.3         | 3.10        | 4.00            | 0.07                            | 0.10               | 20.06  | 1836.74         | 1.36                              | 37.22               |                                 | 64.3                        | 83.0               |                                   | 50.7                                 |
| Interlake                                         | 2563.1         | 26.7         | 103.5              | 0.4         | 3.77        | 3.72            | 0.04                            | 0.04               | 7.09   | 1843.83         | 1.39                              | 36.82               |                                 | 62.1                        | 61.3               |                                   | 51.2                                 |
| вон                                               | 2589.8         |              | 103.9              |             | 3.05        |                 |                                 |                    |        |                 |                                   |                     |                                 |                             |                    |                                   |                                      |
|                                                   |                |              |                    |             |             | $\Sigma =$      | 1.63                            | 2.30               |        |                 |                                   |                     |                                 |                             |                    |                                   |                                      |
| Notes                                             |                |              |                    |             |             |                 |                                 |                    |        |                 | Average                           |                     |                                 | 53.9                        | 76.0               | 52.2                              | 47.8                                 |
| 1 - Thermal conduc                                | tivity derived | l from grap  | hical metho        | d           |             |                 |                                 |                    |        |                 | Wtd Avera                         | ge                  |                                 | 59.5                        | 84.0               |                                   |                                      |
| 2 - Thermal conduc                                | tivity used by | y Nordeng a  | and Nesheim        | n (2011) a  | nd Norde    | ng (2014)       |                                 |                    |        |                 | Shallow                           |                     |                                 |                             |                    | 52.7                              | 41.7                                 |
| 3 - Weighted avera                                | ge of graphic  | al thermal   | conductivity       | ,           |             |                 |                                 |                    |        |                 | Deep                              |                     | 52.0                            |                             |                    | 51.4                              | 49.3                                 |
| 4 - Weighted avera                                | ge of Norden   | g's therma   | l conductivit      | .y          |             |                 |                                 |                    |        |                 |                                   |                     |                                 |                             |                    |                                   |                                      |
| 5 - Harmonic mean                                 | of thermal c   | onductivity  |                    |             |             |                 |                                 |                    |        |                 |                                   |                     |                                 |                             |                    |                                   |                                      |
| 6 - Heat flow derive                              | d from grap    | hical metho  | bd                 |             |             |                 |                                 |                    |        |                 |                                   |                     |                                 |                             |                    |                                   |                                      |
| 7- Heat flow derive                               | d from Equat   | ion 1 for ea | ach formatic       | on          |             |                 |                                 |                    |        |                 |                                   |                     |                                 |                             |                    |                                   |                                      |
| 8 - Heat Flow derive                              | ed from Equa   | ation 1 and  | Nordengs $\lambda$ |             |             |                 |                                 |                    |        |                 |                                   |                     |                                 |                             |                    |                                   |                                      |
| 9 - Heat flow derive                              | d from Bulla   |              |                    |             |             |                 |                                 |                    |        |                 |                                   |                     |                                 |                             |                    |                                   |                                      |
| 10 - Heat flow derived using harmonic mean method |                |              |                    |             |             |                 |                                 |                    |        |                 |                                   |                     |                                 |                             |                    |                                   |                                      |
| 11- FU/HC/FH - For                                | t Union Grou   | p/Hell Cree  | ek Formatior       | h/Fox Hills | Formatic    | n combin        | ed                              |                    |        |                 |                                   |                     |                                 |                             |                    | ĺ                                 |                                      |

## Summary of Heat Flow Calculations NDIC 12280 Brandjord 1-20 Bottineau County, ND

|                                                              | Donth (7)     | 47            | Temp       | ۸T        | <b>a</b> 1 | 2 <sup>2</sup> | <b>ე</b> 3                    | <b>5</b> 4        | A 7 / )            |                   | <b>3</b> 5                        |                   | <b>0</b> 6         | o 7  | <b>0</b> <sup>8</sup> | 9                           | <b>a</b> <sup>10</sup> |
|--------------------------------------------------------------|---------------|---------------|------------|-----------|------------|----------------|-------------------------------|-------------------|--------------------|-------------------|-----------------------------------|-------------------|--------------------|------|-----------------------|-----------------------------|------------------------|
|                                                              | Depth (2)     | Δ <b>ζ</b>    | (1)        | Δι        | ٨          | ۸ <sub>N</sub> | ∧ <sub>wtd</sub>              | ∧ <sub>Nwtd</sub> | Δ2 <sub>i</sub> /Λ | ĸ                 | Λ <sub>hi</sub>                   | grad <sub>i</sub> | Q <sub>graph</sub> | Q2   | Q <sub>N</sub>        | <b>Q</b> <sub>Bullard</sub> | Q <sub>hi</sub>        |
| Formation                                                    | (r            | n)            | (°(        | C)        |            | W m            | <sup>-1</sup> K <sup>-1</sup> |                   | W                  | / K <sup>-1</sup> | W m <sup>-1</sup> K <sup>-1</sup> | °C km⁻¹           |                    |      | mW m <sup>-2</sup>    |                             |                        |
| Fox Hills                                                    | 21.3          | 55.0          | 7.94       | 0.57      | 1.20       | 1.72           | 0.02                          | 0.03              | 13.97              | 13.97             |                                   |                   |                    | 40.8 | 58.5                  |                             |                        |
| Pierre                                                       | 38.1          | 1460.0        | 8.51       | 21.28     | 1.15       | 1.62           | 0.57                          | 0.80              | 386.96             | 400.93            | 0.10                              | 34.00             |                    | 55.0 | 77.5                  |                             | 3.2                    |
| Greenhorm                                                    | 483.1         | 232.0         | 29.79      | 4.05      | 1.00       | 1.62           | 0.08                          | 0.13              | 70.71              | 471.65            | 1.02                              | 47.32             |                    | 57.3 | 92.8                  |                             | 48.5                   |
| Mowry                                                        | 553.8         | 193.0         | 33.84      | 2.72      | 1.00       | 1.80           | 0.07                          | 0.12              | 58.83              | 530.47            | 1.04                              | 48.64             |                    | 46.2 | 83.2                  |                             | 50.8                   |
| Inyan Kara                                                   | 612.6         | 336.0         | 36.56      | 2.46      | 1.70       | 2.35           | 0.19                          | 0.27              | 60.24              | 590.72            | 1.04                              | 48.40             |                    | 40.8 | 56.4                  |                             | 50.2                   |
| Swift                                                        | 715.1         | 547.0         | 39.02      | 5.62      | 1.60       | 2.10           | 0.30                          | 0.39              | 104.20             | 694.92            | 1.03                              | 44.80             |                    | 53.9 | 70.8                  |                             | 46.1                   |
| Spearfish                                                    | 881.8         | 54.1          | 44.64      | 0.23      | 1.60       | 3.04           | 0.03                          | 0.06              | 10.30              | 705.22            | 1.25                              | 42.65             |                    | 22.3 | 42.4                  |                             | 53.3                   |
| Bottom of Well                                               | 898.3         |               | 44.87      |           |            |                |                               |                   |                    |                   |                                   |                   |                    |      |                       |                             |                        |
|                                                              |               |               |            |           |            | $\Sigma =$     | 1.26                          | 1.79              |                    |                   |                                   |                   |                    |      |                       |                             |                        |
| Notes                                                        |               |               |            |           |            |                |                               |                   |                    |                   | Average                           |                   |                    | 45.2 | 68.8                  |                             |                        |
| 1 - Thermal conduct                                          | tivity derive | d from grapl  | hical meth | od        |            |                |                               |                   |                    |                   | Wtd Averag                        | ge                |                    | 51.7 | 73.7                  |                             |                        |
| 2 - Thermal conduct                                          | tivity used b | y Nordeng a   | and Neshe  | im (2011) | and Nord   | leng (2014     | 1)                            |                   |                    |                   | Shallow                           |                   |                    |      |                       |                             |                        |
| 3 - Weighted averag                                          | ge of graphic | al thermal o  | conductivi | ty        |            |                |                               |                   |                    |                   | Deep                              |                   | 54                 |      |                       | 52.7                        | 49.8                   |
| 4 - Weighted average                                         | ge of Norder  | ng's thermal  | conductiv  | /ity      |            |                |                               |                   |                    |                   |                                   |                   |                    |      |                       |                             |                        |
| 5 - Harmonic mean                                            | of thermal of | onductivity   |            |           |            |                |                               |                   |                    |                   |                                   |                   |                    |      |                       |                             |                        |
| 6 - Heat flow derive                                         | d from grap   | hical metho   | d          |           |            |                |                               |                   |                    |                   |                                   |                   |                    |      |                       |                             |                        |
| 7- Heat flow derived                                         | d from Equa   | tion 1 for ea | ich format | ion       |            |                |                               |                   |                    |                   |                                   |                   |                    |      |                       |                             |                        |
| 8 - Heat Flow derived from Equation 1 and Nordengs $\lambda$ |               |               |            |           |            |                |                               |                   |                    |                   |                                   |                   |                    |      |                       |                             |                        |
| 9 - Heat flow derive                                         | d from Bulla  | rd's Metho    | d          |           |            |                |                               |                   |                    |                   |                                   |                   |                    |      |                       |                             |                        |
| 10 - Heat flow deriv                                         | ed using hai  | rmonic mea    | n method   |           |            |                |                               |                   |                    |                   |                                   |                   |                    |      |                       |                             |                        |
|                                                              |               |               |            |           |            |                |                               |                   |                    |                   |                                   |                   |                    |      |                       |                             |                        |

## Summary of Heat Flow Calculations NDIC 12363 Astrid Ongstad 14-22 Williams County, ND

| readresresresresresresresresresresresresresFU/HC/FM20.750.120.10.170.020.3056.7101.40.0145.90.5151.67.00.28.70.000.000.000.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.01 <td< th=""><th></th><th>Depth (Z)</th><th>Δz</th><th>Temp (T)</th><th>ΔΤ</th><th><math>\lambda^1</math></th><th><math>\lambda_N^2</math></th><th><math>\lambda_{wtd}^{3}</math></th><th><math>\lambda_{Nwtd}^{4}</math></th><th><math>\Delta Z_i / \lambda</math></th><th>R<sub>i</sub></th><th>λ<sub>hi</sub>5</th><th>grad<sub>i</sub></th><th><math>\mathbf{Q}_{graph}^{6}</math></th><th>Q<sub>2</sub><sup>7</sup></th><th>Q<sub>N</sub><sup>8</sup></th><th>Q<sub>Bullard</sub><sup>9</sup></th><th>Q<sub>hi</sub><sup>10</sup></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | Depth (Z)            | Δz          | Temp (T)     | ΔΤ         | $\lambda^1$ | $\lambda_N^2$ | $\lambda_{wtd}^{3}$           | $\lambda_{Nwtd}^{4}$ | $\Delta Z_i / \lambda$ | R <sub>i</sub>  | λ <sub>hi</sub> 5                 | grad <sub>i</sub> | $\mathbf{Q}_{graph}^{6}$ | Q <sub>2</sub> <sup>7</sup> | Q <sub>N</sub> <sup>8</sup> | Q <sub>Bullard</sub> <sup>9</sup> | Q <sub>hi</sub> <sup>10</sup> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------|-------------|--------------|------------|-------------|---------------|-------------------------------|----------------------|------------------------|-----------------|-----------------------------------|-------------------|--------------------------|-----------------------------|-----------------------------|-----------------------------------|-------------------------------|
| liµly(-(PiH <sup>1</sup> )         20.7         3.9         20.1         1.30         1.72         0.23         0.31         47.7         47.7         47.7         47.7         47.7         57.5         57.5         57.5           Greenhorn         1228.0         100.9         58.8         6.3         11.0         1.62         0.20         30         56.7         104.3         0.61         4.9.2         51.6         7.60         25.0           Greenhorn         1328.0         10.65         5.8         1.10         1.62         0.03         0.05         91.7         11.01         46.73         58.7         96.0         51.5           Mark ran         1437.4         17.8         7.8         6.1         1.20         2.10         0.05         0.08         10.81         11.81         47.2         45.0         55.0         7.7         55.0           Sparafish         137.8         7.84         6.1         1.30         40.00         0.00         58.9         157.40         1.12         45.44         37.2         7.7         55.0           Sparafish         187.2         54.6         1.5         3.05         3.45         0.02         1.04         163.0         1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Formation              | (m                   | )           | (°C          | )          |             | W m           | <sup>-1</sup> K <sup>-1</sup> |                      | w                      | K <sup>-1</sup> | W m <sup>-1</sup> K <sup>-1</sup> | °C km⁻¹           |                          |                             | mW m <sup>-2</sup>          |                                   |                               |
| Pierce         6127         6423         30.0         827         1.10         1.62         0.20         0.30         567         1043         0.11         45.92         51.6         70.0         825.0           Mowry         1328.0         100.9         58.8         6.3         1.10         1.62         0.03         0.05         100.1         1.11         45.65         1.12         44.73         1.16         70.0         51.5           Mowry         1328.0         108.1         70.8         30.1         1.60         0.23         0.06         0.08         0.23         1.20         1.21         44.74         30.0         52.9         42.0           Swirt         1378.5         1.12         47.24         51.6         77.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FU/HC/FH <sup>11</sup> | 20.7                 | 595.0       | 3.9          | 26.1       | 1.30        | 1.72          | 0.23                          | 0.31                 | 457.7                  | 457.7           |                                   |                   |                          | 57.1                        | 75.5                        |                                   |                               |
| Greenhom       1228.0       100.9       58.8       6.3       1.10       1.2       0.02       0.05       91.7       11.01       46.73       68.3       100.5       5.5       51.5         Mowry       1328.9       108.5       6.50       5.8       1.10       1.80       0.04       0.06       98.6       1204.7       1.10       46.73       58.7       96.0       51.5         Night       159.9       1.31.4       7.08       3.0       1.60       2.35       0.06       0.08       10.95       1.396.5       1.12       47.24       36.0       55.9       52.9       52.8         Specifish       1780.7       780.6       6.5       1.30       2.00       0.02       0.05       46.4       1.20       43.41       2.28       76.7       53.0         Opeche       1972.7       6.04       88.6       1.5       1.30       3.04       0.02       0.02       0.04       163.08       1.22       43.41       2.28       76.7       53.2         Specifish       1972.7       6.04       88.6       1.40       2.68       0.07       0.14       163.08       1.22       43.41       2.82       56.1       10.7       53.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pierre                 | 615.7                | 612.3       | 30.0         | 28.7       | 1.10        | 1.62          | 0.20                          | 0.30                 | 556.7                  | 1014.3          | 0.61                              | 43.92             |                          | 51.6                        | 76.0                        |                                   | 26.7                          |
| Mowny         128.9         108.5         65.0         5.8         1.10         1.80         0.04         0.06         98.6         1.20         1.10         46.73         5.8.7         96.0         5.1.5           man Kara         1437.4         131.7         70.8         6.1         1.20         2.10         0.05         0.08         109.5         1136.5         1.12         45.24         45.6         97.2         50.0           Reirdon         170.5         178.0         79.8         6.1         1.20         0.00         0.00         188.7         157.5         1.12         45.24         55.6         97.2         0.00         50.8           Spearlish         1378.5         94.2         86.4         2.2         1.00         0.00         0.00         10.4         162.0         1.12         43.41         43.28         76.7         45.28           Broon Creek/Amd         203.0         22.9         90.2         0.5         2.00         0.00         1.01         1.210         1.75         4.17         4.28         4.27         4.60         63.5         53.4         5.34           Tyler         225.3         4.43         3.78         3.33         3.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Greenhorn              | 1228.0               | 100.9       | 58.8         | 6.3        | 1.10        | 1.62          | 0.03                          | 0.05                 | 91.7                   | 1106.1          | 1.11                              | 45.45             |                          | 68.3                        | 100.5                       |                                   | 50.5                          |
| myan kara         1437.4         131.7         70.8         3.0         1.60         2.35         0.06         0.09         82.3         134.0         112         47.24         36.0         52.9         52.8           soft         15601         131.4         77.8         6.1         1.20         2.10         0.08         0.01         112         47.24         55.6         97.2         50.7           Reirdon         1700.5         178.0         79.9         6.6         1.50         2.10         0.08         0.01         118.7         151.1         1.12         45.34         55.6         97.2         50.8           Spearfish         187.7         60.4         8.64         1.5         1.30         3.04         0.02         0.05         6.64.4         162.0         1.12         47.44         32.8         76.7         55.8           Prier         2055.9         169.5         90.6         6.8         1.02         0.02         1.02         1.76.8         1.22         54.24         55.6         74.6         53.3           Klobey         2225.3         4.45         1.97.4         0.99         2.70         3.45         0.16         0.18         184.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mowry                  | 1328.9               | 108.5       | 65.0         | 5.8        | 1.10        | 1.80          | 0.04                          | 0.06                 | 98.6                   | 1204.7          | 1.10                              | 46.73             |                          | 58.7                        | 96.0                        |                                   | 51.5                          |
| Swift       1569.1       131.4       73.8       6.1       1.20       2.10       0.05       0.08       1001       118.7       151.1       1.12       45.4       55.6       97.2       507         Reirdon       1700.5       178.0       79.8       6.4       1.50       2.10       0.08       0.011       118.7       151.1       1.12       45.23       55.4       77.6       503         Specifish       178.0       72.7       6.04       88.6       1.5       1.30       3.04       0.02       0.05       6.4       1.22       43.41       32.8       76.7       53.0         Opeche       1972.7       6.04       88.6       1.5       1.30       3.04       0.02       0.05       16.6       1.20       1.12       43.28       76.7       53.3         Opeche       2055.9       169.5       90.6       6.8       1.40       2.20       1.04       0.02       1.02       1.117       42.62       56.1       107.4       50.0         Klobey       2223.3       44.3       98.3       3.3.3       3.05       3.45       0.016       0.16       1.83.1       71.83       46.4       73.0       57.0       66.4       53.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Inyan Kara             | 1437.4               | 131.7       | 70.8         | 3.0        | 1.60        | 2.35          | 0.06                          | 0.09                 | 82.3                   | 1287.0          | 1.12                              | 47.24             |                          | 36.0                        | 52.9                        |                                   | 52.8                          |
| Reindom       1700.5       178.0       9.9.9       6.6       1.50       2.0       0.08       0.04       0.00       58.9       157.4       1.19       44.44       37.2       70.7       53.0         Spearifish       187.5       0.04       88.6       1.5       1.03       0.04       0.02       0.05       64.6       1.22       43.41       0.28       87.0       53.8         Broom Creek/Ams       203.0       2.29       9.02       0.25       2.20       3.04       0.02       0.05       165.1       176.4       1.26       44.81       65.6       74.6       53.4         Klobey       2225.3       44.5       9.74       0.9       2.70       3.62       0.04       0.05       1.65       176.4       1.26       44.43       55.6       74.6       53.4         MadisorGroup       2269.8       174.3       98.3       3.3       3.05       3.45       0.02       0.02       1.81.5       1.33       40.07       64.6       73.0       53.8         Base of Last Sat       251.6       198.1       10.36       0.75       6.15       0.02       0.02       1.81.3       3.78.3       40.77       10.8.0       53.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Swift                  | 1569.1               | 131.4       | 73.8         | 6.1        | 1.20        | 2.10          | 0.05                          | 0.08                 | 109.5                  | 1396.5          | 1.12                              | 45.14             |                          | 55.6                        | 97.2                        |                                   | 50.7                          |
| Spearlish         1878.5         94.2         86.4         2.2         1.60         3.04         0.09         58.9         1574.0         1.19         44.44         37.2         70.7         53.0           Opeche         1972.7         60.4         88.6         1.5         1.30         3.04         0.02         0.05         44.61         162.04         1.22         43.41         32.8         76.7         52.8           Broom Creek/Ams0         2035.0         169.5         90.6         6.8         1.40         2.68         0.07         0.14         12.10         175.19         1.17         42.62         56.1         107.4         55.3           Kibbey         2255.8         174.3         98.3         3.3         3.05         3.45         0.02         0.02         6.2         1831.7         1.33         40.32         64.6         73.0         53.8           Racliffe         2463.1         155.5         10.0         1.6         3.45         0.02         0.02         62         1831.7         1.33         40.17         85.2         96.4         53.3           Frobisher-Alida         251.86         1381.1         10.3.6         3.17         2.50         4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reirdon                | 1700.5               | 178.0       | 79.9         | 6.6        | 1.50        | 2.10          | 0.08                          | 0.11                 | 118.7                  | 1515.1          | 1.12                              | 45.23             |                          | 55.4                        | 77.6                        |                                   | 50.8                          |
| Opeche         1972.7         60.4         88.6         1.5         1.30         3.04         0.02         0.05         44.4         1.22         44.41         32.8         76.7         52.8           Broom Creek/Amsd         2033.0         22.9         90.2         0.5         2.20         3.04         0.02         10.4         163.8         1.25         42.87         46.0         63.5         53.4           Kibbey         2225.3         44.5         97.4         0.9         2.70         3.62         0.04         0.05         1.65         176.8         1.26         42.43         55.6         74.6         53.4           Madison Group         2269.8         174.3         98.3         3.3         3.05         3.45         0.02         0.02         62         1831.7         1.33         40.32         64.6         73.0         53.8           Racifife         2444.2         18.9         101.6         0.45         3.45         0.07         0.20         63.8         183.1         1.33         40.32         64.6         73.0         53.8           Trobisher-Alida         2318.6         198.1         0.13         0.21         0.48         30.3         37.38         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Spearfish              | 1878.5               | 94.2        | 86.4         | 2.2        | 1.60        | 3.04          | 0.04                          | 0.09                 | 58.9                   | 1574.0          | 1.19                              | 44.44             |                          | 37.2                        | 70.7                        |                                   | 53.0                          |
| Broom Creek/Amsd         2033.0         22.9         90.2         0.5         2.20         3.04         0.02         0.02         1.41         1.450.8         1.25         42.87         46.0         63.5         53.4           Tyler         2055.9         169.5         90.6         6.8         1.44         2.68         0.07         0.14         121.0         175.1         1.17         42.62         56.1         107.4         50.0           Klobey         2252.8         144.5         97.4         0.9         2.70         3.62         0.04         0.05         15.5         176.4         1.12         41.99         57.0         64.6         53.2           Batcliffe         2444.2         18.9         101.6         0.4         3.05         3.45         0.02         62.1         183.1         1.33         40.17         85.2         96.4         53.5           Batcliffe         246.13         15.5         102.0         1.6         3.05         3.45         0.01         0.02         68.3         138.2         1.33         40.07         25.2         10.03         1.35         77.8         1.43         37.44         75.9         121.4         53.3           Groppi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Opeche                 | 1972.7               | 60.4        | 88.6         | 1.5        | 1.30        | 3.04          | 0.02                          | 0.05                 | 46.4                   | 1620.4          | 1.22                              | 43.41             |                          | 32.8                        | 76.7                        |                                   | 52.8                          |
| Tyler       2055.9       169.5       90.6       6.8       1.40       2.68       0.07       0.14       121.0       177       42.62       55.6       74.6       50.0         Kibbey       2253.3       44.5       97.4       0.9       2.70       3.62       0.04       0.05       165       1768.4       1.26       42.43       55.6       74.6       53.3         RatLiffe       22444.2       183.9       101.6       0.4       3.05       3.45       0.02       0.02       6.8       183.7       1.33       40.32       64.6       73.0       53.8         Base of Last Sas       103.6       2.3       2.90       3.45       0.17       0.20       68.3       198.2       1.31       39.90       34.2       40.7       55.2       64.6       53.3         Frobisher-Alida       2518.6       198.1       103.6       2.3       2.90       3.45       0.13       0.20       68.3       198.2       1.31       39.90       34.2       40.7       1.53         Bakken       2911.6       7.3       112.6       1.7       2.50       4.00       0.02       204.3       1.13       37.30       57.8       92.4       53.3 <t< td=""><td>Broom Creek/Amsd</td><td>2033.0</td><td>22.9</td><td>90.2</td><td>0.5</td><td>2.20</td><td>3.04</td><td>0.02</td><td>0.02</td><td>10.4</td><td>1630.8</td><td>1.25</td><td>42.87</td><td></td><td>46.0</td><td>63.5</td><td></td><td>53.4</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Broom Creek/Amsd       | 2033.0               | 22.9        | 90.2         | 0.5        | 2.20        | 3.04          | 0.02                          | 0.02                 | 10.4                   | 1630.8          | 1.25                              | 42.87             |                          | 46.0                        | 63.5                        |                                   | 53.4                          |
| Kibbey       22253       44.5       97.4       0.9       2.70       3.62       0.04       0.05       16.5       176.4       1.26       42.43       55.6       74.6       53.4         Madison Group       2269.8       174.3       98.3       3.3       3.05       3.45       0.02       0.02       63.2       183.7       1.33       40.03       64.6       73.0       53.8         Base of Last Salt       2464.3       155.5       102.0       1.6       3.05       3.45       0.02       0.02       6.2       183.7       1.33       40.07       85.2       96.4       53.8         Frobisher-Alida       2518.6       198.1       103.6       2.3       2.90       3.45       0.17       0.20       68.3       1918.2       1.31       39.90       34.2       40.7       52.4         Lodgepole       2716.7       200.9       105.9       6.3       2.10       3.45       0.01       0.04       30.5       204.3       1.43       37.38       46.7       108.0       51.0         Baken       2951.1       57.3       113.6       0.7       2.50       4.00       0.02       0.04       11.8       207.3       1.43       37.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tyler                  | 2055.9               | 169.5       | 90.6         | 6.8        | 1.40        | 2.68          | 0.07                          | 0.14                 | 121.0                  | 1751.9          | 1.17                              | 42.62             |                          | 56.1                        | 107.4                       |                                   | 50.0                          |
| Madison Group       2269.8       174.3       98.3       3.3       3.05       3.45       0.0.6       0.22       1831.7       1.33       40.32       64.6       73.0       64.5         Ratcliffe       2444.2       183.9       101.6       0.04       3.05       3.45       0.02       0.02       6.2       1831.7       1.33       40.32       64.6       73.0       €5.2         Base of Last Sait       2463.1       55.5       102.0       1.6       3.05       3.45       0.02       0.06       182.1       13.3       40.02       64.6       73.0       €5.2         Frobisher-Ailda       2518.6       198.1       103.6       2.3       2.90       3.45       0.13       0.21       5.6       203.3       1.35       3.78       6.67       108.0       6.53         Bakken       2951.1       57.3       113.6       1.7       2.50       4.00       0.04       0.07       22.9       2067.3       1.43       37.44       75.9       12.4       4.53         Birdbear       308.4       28.2       115.0       3.2       2.0       4.00       0.04       0.07       2.14       1.43       37.41       74.9       30.1       2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Kibbey                 | 2225.3               | 44.5        | 97.4         | 0.9        | 2.70        | 3.62          | 0.04                          | 0.05                 | 16.5                   | 1768.4          | 1.26                              | 42.43             |                          | 55.6                        | 74.6                        |                                   | 53.4                          |
| Ratcliffe         2444.2         18.9         10.6         0.4         3.05         3.45         0.02         0.22         1.81.7         1.33         40.32         6.6.6         7.3.0         5.3.8           Base of Last Sait         2463.1         55.5         102.0         1.6         3.05         3.45         0.017         0.20         6.8         1918.2         1.33         40.17         85.2         96.4         53.5           Frobisher-Alida         2518.6         198.1         103.6         2.3         2.90         3.45         0.17         0.20         68.3         1918.2         1.33         37.83         66.7         108.0         53.3           Bakken         2917.5         313.5         112.2         1.4         1.10         4.00         0.01         0.04         30.5         204.3         1.43         37.38         46.7         169.7         53.3           Three Forks         2951.1         57.3         1113.6         0.7         2.50         4.00         0.02         20.4         1.43         37.38         46.7         169.7         53.3           Duperow         3037.9         143.3         37.4         27.5         12.4         3.53         50.3<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Madison Group          | 2269.8               | 174.3       | 98.3         | 3.3        | 3.05        | 3.45          | 0.16                          | 0.18                 | 57.2                   | 1825.5          | 1.24                              | 41.99             |                          | 57.0                        | 64.5                        |                                   | 52.2                          |
| Base of Lax Salt       2463.1       55.5       10.20       1.6       3.05       3.45       0.05       18.2       1849.9       1.33       40.17       85.2       96.4       53.5         Frobisher-Alida       2518.6       198.1       103.6       2.3       2.90       3.45       0.17       0.20       68.3       1918.2       1.31       39.90       34.2       40.7       52.1         Lodgepole       2716.7       20.09       105.9       6.3       2.10       3.45       0.13       0.21       95.6       2013.9       1.35       37.83       65.7       108.0       51.0         Bakken       2917.5       33.5       112.2       1.4       1.10       4.00       0.01       0.04       30.5       204.3       1.43       37.38       46.7       169.7       53.3         Birdbear       3037.9       142.3       116.0       3.2       2.20       4.00       0.09       0.17       64.7       214.8       1.42       37.16       49.5       90.1       52.7         Souris River       3180.3       83.2       119.2       2.2       2.60       3.09       0.06       0.08       32.0       215.1       1.46       36.50       67.4<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ratcliffe              | 2444.2               | 18.9        | 101.6        | 0.4        | 3.05        | 3.45          | 0.02                          | 0.02                 | 6.2                    | 1831.7          | 1.33                              | 40.32             |                          | 64.6                        | 73.0                        |                                   | 53.8                          |
| Frobisher-Alida       2518.6       198.1       103.6       2.3       2.90       3.45       0.17       0.20       68.3       1918.2       1.31       39.90       34.2       40.7       52.4         Lodgepole       2716.7       200.9       10.5       6.3       21.0       3.45       0.13       0.21       95.6       2013.9       1.35       37.83       66.7       108.0       53.3         Three Forks       2951.1       57.3       113.6       1.7       2.50       4.00       0.02       0.04       1.8       207.1       1.45       37.30       57.8       92.4       54.3         Duperow       3037.9       142.3       116.0       3.2       2.00       4.00       0.02       0.04       1.18       207.1       1.45       37.30       57.8       92.4       54.2         Souris River       3180.3       83.2       119.2       2.2       2.00       3.09       0.04       15.5       2191.3       1.49       36.23       2.87       35.5       54.0         Dawson Bay       3263.5       38.7       121.4       0.4       2.50       3.09       0.03       0.41       15.5       2191.3       1.49       36.23       2.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Base of Last Salt      | 2463.1               | 55.5        | 102.0        | 1.6        | 3.05        | 3.45          | 0.05                          | 0.06                 | 18.2                   | 1849.9          | 1.33                              | 40.17             |                          | 85.2                        | 96.4                        |                                   | 53.5                          |
| Lodgepole       2716.7       200.9       105.9       6.3       2.10       3.45       0.13       0.21       95.6       201.39       1.35       37.83       66.7       108.0       51.0         Bakken       2917.5       33.5       112.2       1.4       1.10       4.00       0.01       0.04       305.2       2044.3       1.43       37.38       46.7       169.7       0.53.3         Three Forks       2951.1       57.3       113.6       1.7       2.50       4.00       0.02       0.04       1.18       207.1       1.43       37.44       75.9       92.4       54.0         Duperow       3037.9       142.3       116.0       3.2       2.20       4.00       0.09       0.17       64.7       148       1.42       37.16       49.5       90.1       52.7         Souris River       3180.3       83.7       121.4       0.4       2.50       3.09       0.03       0.04       15.5       2191.3       1.44       36.23       28.7       35.5       54.0         Dawson Bay       3263.5       3.87       121.4       0.4       2.50       3.09       0.03       12.3       2203.6       1.50       35.9       58.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Frobisher-Alida        | 2518.6               | 198.1       | 103.6        | 2.3        | 2.90        | 3.45          | 0.17                          | 0.20                 | 68.3                   | 1918.2          | 1.31                              | 39.90             |                          | 34.2                        | 40.7                        |                                   | 52.4                          |
| Bakken       2917.5       33.5       112.2       1.4       1.10       4.00       0.01       0.04       30.5       2044.3       1.43       37.38       46.7       169.7       53.3         Three Forks       2951.1       57.3       113.6       1.7       2.50       4.00       0.02       0.07       22.9       2067.3       1.43       37.34       75.9       121.4       53.3         Bredbear       3008.4       29.6       115.3       0.7       2.50       4.00       0.09       0.04       11.8       2079.1       1.45       37.30       57.8       99.01       52.7         Souris River       3180.3       83.2       119.2       2.2       2.60       3.09       0.06       0.08       32.0       2175.8       1.46       36.50       67.4       80.0       53.4         Dawson Bay       3263.5       3.8.7       121.4       0.4       2.50       3.09       0.06       0.03       12.3       2203.6       1.50       35.94       58.6       31.9       53.9         BoH       3351.5       122.6       1       1.7       2.46       0       1.50       35.94       58.6       31.9       52.7       51.4 <tr< td=""><td>Lodgepole</td><td>2716.7</td><td>200.9</td><td>105.9</td><td>6.3</td><td>2.10</td><td>3.45</td><td>0.13</td><td>0.21</td><td>95.6</td><td>2013.9</td><td>1.35</td><td>37.83</td><td></td><td>65.7</td><td>108.0</td><td></td><td>51.0</td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lodgepole              | 2716.7               | 200.9       | 105.9        | 6.3        | 2.10        | 3.45          | 0.13                          | 0.21                 | 95.6                   | 2013.9          | 1.35                              | 37.83             |                          | 65.7                        | 108.0                       |                                   | 51.0                          |
| Three Forks       2951.1       57.3       113.6       1.7       2.50       4.00       0.04       0.07       22.9       2067.3       1.43       37.44       75.9       121.4       53.4         Birdbear       3008.4       29.6       115.3       0.7       2.50       4.00       0.02       0.04       11.8       2079.1       1.45       37.30       57.8       92.4       54.0         Duperow       3037.9       142.3       116.0       3.2       2.20       4.00       0.09       0.17       64.7       214.8       1.42       37.16       49.5       90.1       55.7       5.4         Dawson Bay       3263.5       38.7       121.4       0.4       2.50       3.09       0.03       0.04       15.5       2191.3       1.49       36.23       28.7       35.5       54.0         Prairie Evaporite       3302.2       49.3       121.8       0.7       4.00       2.18       0.06       0.03       12.3       2203.6       1.50       35.94       58.6       31.9       53.9       59.9       58.6       31.9       53.9       59.9       58.6       31.9       59.9       59.1       59.1       50.1       50.1       50.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bakken                 | 2917.5               | 33.5        | 112.2        | 1.4        | 1.10        | 4.00          | 0.01                          | 0.04                 | 30.5                   | 2044.3          | 1.43                              | 37.38             |                          | 46.7                        | 169.7                       |                                   | 53.3                          |
| Birdbear       3008.4       2.96       115.3       0.7       2.50       4.00       0.02       0.04       11.8       2079.1       1.45       37.30       57.8       92.4       54.0         Duperow       3037.9       142.3       116.0       3.2       2.20       4.00       0.09       0.17       64.7       2143.8       1.42       37.16       49.5       90.01       57.8       92.4       58.6       53.4         Dawson Bay       3263.5       38.7       121.4       0.4       2.50       3.09       0.06       0.08       32.0       2175.8       1.46       36.50       67.4       80.0       53.4         Dawson Bay       3302.2       49.3       121.4       0.4       2.50       3.09       0.03       0.04       15.5       2191.3       1.44       36.23       62.8       35.5       53.9       53.9         BOH       3351.5       122.6                  54.0       54.0       54.0       54.0       54.0       54.0       54.0       54.0       54.0       54.0       54.0       54.0       54.0       54.0       54.0 <td< td=""><td>Three Forks</td><td>2951.1</td><td>57.3</td><td>113.6</td><td>1.7</td><td>2.50</td><td>4.00</td><td>0.04</td><td>0.07</td><td>22.9</td><td>2067.3</td><td>1.43</td><td>37.44</td><td></td><td>75.9</td><td>121.4</td><td></td><td>53.4</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Three Forks            | 2951.1               | 57.3        | 113.6        | 1.7        | 2.50        | 4.00          | 0.04                          | 0.07                 | 22.9                   | 2067.3          | 1.43                              | 37.44             |                          | 75.9                        | 121.4                       |                                   | 53.4                          |
| Duperow       3037.9       142.3       116.0       3.2       2.20       4.00       0.09       0.17       64.7       2143.8       1.42       37.16       49.5       90.1       52.7         Souris River       3180.3       83.2       119.2       2.2       2.60       3.09       0.06       0.08       32.0       217.5.8       1.46       36.50       67.4       80.0       53.4         Dawson Bay       3263.5       38.7       121.4       0.4       2.50       3.09       0.03       0.04       15.5       2191.3       1.49       36.23       28.7       35.5       54.0         Prairie Evaporite       3302.2       49.3       121.8       0.7       4.00       2.18       0.06       0.03       122.6       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0 <td>Birdbear</td> <td>3008.4</td> <td>29.6</td> <td>115.3</td> <td>0.7</td> <td>2.50</td> <td>4.00</td> <td>0.02</td> <td>0.04</td> <td>11.8</td> <td>2079.1</td> <td>1.45</td> <td>37.30</td> <td></td> <td>57.8</td> <td>92.4</td> <td></td> <td>54.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Birdbear               | 3008.4               | 29.6        | 115.3        | 0.7        | 2.50        | 4.00          | 0.02                          | 0.04                 | 11.8                   | 2079.1          | 1.45                              | 37.30             |                          | 57.8                        | 92.4                        |                                   | 54.0                          |
| Souris River       3180.3       83.2       119.2       2.2       2.60       3.09       0.06       0.08       32.0       2175.8       1.46       36.00       67.4       80.0       53.4         Dawson Bay       3263.5       38.7       121.4       0.4       2.50       3.09       0.03       0.04       15.5       2191.3       1.49       36.23       28.7       35.5       54.0         Prairie Evaporite       3302.2       49.3       121.8       0.7       4.00       2.18       0.06       0.03       12.3       2203.6       1.50       35.94       58.6       31.9       53.9         BOH       3351.5       122.6       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Duperow                | 3037.9               | 142.3       | 116.0        | 3.2        | 2.20        | 4.00          | 0.09                          | 0.17                 | 64.7                   | 2143.8          | 1.42                              | 37.16             |                          | 49.5                        | 90.1                        |                                   | 52.7                          |
| Dawson Bay         3263.5         38.7         121.4         0.4         2.50         3.09         0.03         0.04         15.5         2191.3         1.49         36.23         28.7         35.5         54.0           Prairie Evaporite         3302.2         49.3         121.8         0.7         4.00         2.18         0.06         0.03         12.3         2203.6         1.50         35.94         58.6         31.9         53.9           BOH         3351.5         122.6         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I <td>Souris River</td> <td>3180.3</td> <td>83.2</td> <td>119.2</td> <td>2.2</td> <td>2.60</td> <td>3.09</td> <td>0.06</td> <td>0.08</td> <td>32.0</td> <td>2175.8</td> <td>1.46</td> <td>36.50</td> <td></td> <td>67.4</td> <td>80.0</td> <td></td> <td>53.4</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Souris River           | 3180.3               | 83.2        | 119.2        | 2.2        | 2.60        | 3.09          | 0.06                          | 0.08                 | 32.0                   | 2175.8          | 1.46                              | 36.50             |                          | 67.4                        | 80.0                        |                                   | 53.4                          |
| Prairie Evaporite       3302.2       49.3       121.8       0.7       4.00       2.18       0.06       0.03       12.3       2203.6       1.50       35.94       58.6       31.9       53.9         BOH       3351.5       122.6       Image: Constraint of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of t                                                                                                                                                                                                            | Dawson Bay             | 3263.5               | 38.7        | 121.4        | 0.4        | 2.50        | 3.09          | 0.03                          | 0.04                 | 15.5                   | 2191.3          | 1.49                              | 36.23             |                          | 28.7                        | 35.5                        |                                   | 54.0                          |
| BOH     3351.5     122.6     Image: Constraint on the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t                             | Prairie Evaporite      | 3302.2               | 49.3        | 121.8        | 0.7        | 4.00        | 2.18          | 0.06                          | 0.03                 | 12.3                   | 2203.6          | 1.50                              | 35.94             |                          | 58.6                        | 31.9                        |                                   | 53.9                          |
| Image: constraint of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the st | вон                    | 3351.5               |             | 122.6        |            |             |               |                               |                      |                        |                 |                                   |                   |                          |                             |                             |                                   |                               |
| Notes $\Sigma =$ 1.732.46 $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ NotesAverage54.282.252.751.41 - Thermal conductivity derived from graphical method $Wtd$ Average61.187.2 $\sim$ 2 - Thermal conductivity used by Nordeng and Nesheim (2011) and Nordeng (2014) $Shallow$ $O$ 51.638.63 - Weighted average of graphical thermal conductivity $Shallow$ $O$ $O$ 52.952.74 - Weighted average of Nordeng's thermal conductivity $O$ $O$ $O$ $O$ $O$ $O$ 5 - Harmonic mean of thermal conductivity $O$ $O$ $O$ $O$ $O$ $O$ $O$ 6 - Heat flow derived from graphical method $V$ $O$ $O$ $O$ $O$ $O$ $O$ $O$ 7 - Heat flow derived from Equation 1 for each formation $V$ $O$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                      |             |              |            |             | _             |                               |                      |                        |                 |                                   |                   |                          |                             |                             |                                   |                               |
| NotesAverage54.282.252.751.41 - Thermal conductivity derived from graphical methodWtd Average61.187.212 - Thermal conductivity used by Nordeng and Nesheim (2011) and Nordeng (2014)Shallow51.638.63 - Weighted average of graphical thermal conductivityDeep52.052.952.74 - Weighted average of Nordeng's thermal conductivityDeep52.052.952.95 - Harmonic mean of thermal conductivityImage: ConductivityImage: ConductivityImage: Conductivity6 - Heat flow derived from Equation 1 for each formationImage: Conductived from Equation 1 and Nordengs $\lambda$ Image: Conductived from Bullard's MethodImage: Conductived from Bullard's MethodImage: Conductived from Equation/Fox Hills Formation combinedImage: Conductived from Equation/Fox Hills Formation combinedImage: Conductived from Equation/Fox Hills Formation combinedImage: ConductiveImage: Conductive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                      |             |              |            |             | $\Sigma =$    | 1.73                          | 2.46                 |                        |                 |                                   |                   |                          | 54.2                        |                             | 50.7                              | 54.4                          |
| 1 - Thermal conductivity derived from graphical method       Witd Average       61.1       87.2         2 - Thermal conductivity used by Nordeng and Nesheim (2011) and Nordeng (2014)       Shallow       51.6       38.6         3 - Weighted average of graphical thermal conductivity       Deep       52.0       52.9       52.7         4 - Weighted average of Nordeng's thermal conductivity       Deep       52.0       52.9       52.7         5 - Harmonic mean of thermal conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity         6 - Heat flow derived from graphical method       Image: Conductive from graphical method       Image: Conductive from graphical method       Image: Conductive from graphical method       Image: Conductive from graphical method       Image: Conductive from graphical method       Image: Conductive from graphical method       Image: Conductive from graphical method       Image: Conductive from graphical method       Image: Conductive from graphical method       Image: Conductive from graphical method       Image: Conductive from graphical method       Image: Conductive from graphical method       Image: Conductive from graphical method       Image: Conductive from graphical method       Image: Conductive from graphical method       Image: Conductive from graphical method       Image: Conductive from graphical method       Image: Conductive from graphical method       Image: Conductive from graphical method       Image: Conductive from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Notes                  | to the collection of |             |              |            |             |               |                               |                      |                        |                 | Average                           |                   |                          | 54.2                        | 82.2                        | 52.7                              | 51.4                          |
| 2 - Thermal conductivity used by Nordeng and Nesheim (2011) and Nordeng (2014)       Shallow       51.6       38.6         3 - Weighted average of graphical thermal conductivity       Deep       52.0       52.9       52.7         4 - Weighted average of Nordeng's thermal conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductivity       Image: Conductity       Image: Conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 - Thermal conduct    | ivity derived        | i from grap | onical metho | )a<br>     |             | - /2014       | <b>`</b>                      |                      |                        |                 | wto Averag                        | ge                |                          | 61.1                        | 87.2                        | F4.C                              | 20.0                          |
| 3 - Weighted average of graphical thermal conductivity       32.9       32.7         4 - Weighted average of Nordeng's thermal conductivity       1       1       1       32.9       32.7         5 - Harmonic mean of thermal conductivity       1       1       1       1       1       1         6 - Heat flow derived from graphical method       1       1       1       1       1       1         7 - Heat flow derived from Equation 1 for each formation       1       1       1       1       1       1       1         9 - Heat flow derived from Bullard's Method       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 - Thermal conduct    | ivity used by        | / Nordeng   | and Nesneir  | n (2011) a | and Norde   | eng (2014     | )                             |                      |                        |                 | Snallow                           |                   | 52.0                     |                             |                             | 51.6                              | 38.b                          |
| 4 - Weighted average of Nordeing's thermal conductivity       Image: Conductivity         5 - Harmonic mean of thermal conductivity       Image: Conductivity         6 - Heat flow derived from graphical method       Image: Conductivity         7 - Heat flow derived from Equation 1 for each formation       Image: Conductivity         8 - Heat flow derived from Equation 1 and Nordengs λ       Image: Conductivity         9 - Heat flow derived from Bullard's Method       Image: Conductivity         10 - Heat flow derived using harmonic mean method       Image: Conductivity         11 - FU/HC/FH - Fort Union Group/Hell Creek Formation/Fox Hills Formation combined       Image: Conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 - Weighted average   | e of Norden          | a's thorma  | l conductivi | y<br>+\/   |             |               |                               |                      |                        |                 | реер                              |                   | 52.0                     |                             |                             | 52.5                              | 52.7                          |
| 6 - Heat flow derived from graphical method <td>5 - Harmonic mean</td> <td>of thermal co</td> <td>onductivity</td> <td>/</td> <td>Ly</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 - Harmonic mean      | of thermal co        | onductivity | /            | Ly         |             |               |                               |                      |                        |                 |                                   |                   |                          |                             |                             |                                   |                               |
| 7- Heat flow derived from Equation 1 for each formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 - Heat flow derive   | d from grant         | nical meth  | ,<br>hd      |            |             |               |                               |                      |                        |                 |                                   |                   |                          |                             |                             |                                   |                               |
| 8 - Heat Flow derived from Equation 1 and Nordengs λ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7- Heat flow derived   | l from Fauat         | ion 1 for e | ach formati  | on         |             |               |                               |                      |                        |                 |                                   |                   |                          |                             |                             |                                   |                               |
| 9 - Heat flow derived from Bullard's Method 10 - Heat flow derived using harmonic mean method 11 - FU/HC/FH - Fort Union Group/Hell Creek Formation/Fox Hills Formation combined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 - Heat Flow derive   | d from Equa          | tion 1 and  | Nordengs λ   |            |             |               |                               |                      |                        |                 |                                   |                   |                          |                             |                             |                                   |                               |
| 10 - Heat flow derived using harmonic mean method  11 - FU/HC/FH - Fort Union Group/Hell Creek Formation/Fox Hills Formation combined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 - Heat flow derive   | d from Bulla         | rd's Metho  | d            | -          |             |               |                               |                      |                        |                 |                                   |                   |                          |                             |                             |                                   |                               |
| 11- FU/HC/FH - Fort Union Group/Hell Creek Formation/Fox Hills Formation combined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 - Heat flow derive  | ed using har         | monic mea   | an method    |            |             |               |                               |                      |                        |                 |                                   |                   |                          |                             |                             |                                   |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11- FU/HC/FH - Fort    | Union Grou           | p/Hell Cre  | ek Formatio  | n/Fox Hill | s Formati   | on combi      | ned                           |                      |                        |                 |                                   |                   |                          |                             |                             |                                   |                               |

## Summary of Heat Flow Calculations NDIC 13132 Frink 13-15 McClean County, ND

|                      | Depth (7)                                                                     | ٨7            | Temp (T)           | АТ             | λ1       | 2 <sup>2</sup>    | 2 3                           | 24   | A7 /)         | R               | λ 5               | grad                | 0 6    | 07                    | 0 <sup>8</sup>                       | 9       | 0 10        |
|----------------------|-------------------------------------------------------------------------------|---------------|--------------------|----------------|----------|-------------------|-------------------------------|------|---------------|-----------------|-------------------|---------------------|--------|-----------------------|--------------------------------------|---------|-------------|
| Formation            | (n                                                                            | <br>n)        | 1°C                | <u>ר.</u><br>י |          | - <sup>70</sup> N | <sup>-1</sup> K <sup>-1</sup> | Nwtd | <u>אין בב</u> | κ <sup>-1</sup> | $M m^{-1} K^{-1}$ | °C km <sup>-1</sup> | ≪graph | <b>Q</b> <sub>2</sub> | ≪ <sub>N</sub><br>mW m <sup>-2</sup> | Bullard | <b>C</b> hi |
| Till                 | 0.0                                                                           | 44.2          | 61                 | .,<br>19       | 1 20     | 1 72              | 0.02                          | 0.03 | 36.83         | 36.83           | wini k            | CKIII               |        | 51.4                  | 73 7                                 |         |             |
|                      | 44.2                                                                          | 160.2         | 8.0                | 10.7           | 1.20     | 1 72              | 0.02                          | 0.03 | 287.66        | 324.40          | 0.14              | 12 85               |        | 37.2                  | /0.1                                 |         | 5.9         |
| Pierre               | 504.4                                                                         | 690.2         | 18.7               | 25.6           | 1.00     | 1.72              | 0.32                          | 0.34 | 627.33        | 951.82          | 0.14              | 25.05               |        | 40.9                  | 60.2                                 |         | 13.3        |
| Greenhorn            | 1194 5                                                                        | 122.8         | 44.4               | 6.1            | 1.10     | 1.62              | 0.05                          | 0.40 | 122.83        | 1074 65         | 1 11              | 32.03               |        | 40.5                  | 80.1                                 |         | 35.6        |
| Mowry                | 1317 3                                                                        | 100.6         | 50.4               | 4 1            | 1 10     | 1.02              | 0.05                          | 0.08 | 91 44         | 1166.09         | 1 13              | 33.66               |        | 45.3                  | 74 1                                 |         | 38.0        |
| Invan Kara           | 1417.9                                                                        | 127.4         | 54.6               | 2.5            | 1.40     | 2.35              | 0.08                          | 0.13 | 91.00         | 1257.10         | 1.13              | 34.19               |        | 27.4                  | 45.9                                 |         | 38.6        |
| Swift                | 1545.3                                                                        | 133.2         | 57.1               | 3.7            | 1.20     | 2.10              | 0.07                          | 0.12 | 111.00        | 1368.10         | 1.13              | 32.99               |        | 33.6                  | 58.8                                 |         | 37.3        |
| Rierdon              | 1678.5                                                                        | 147.2         | 60.8               | 4.2            | 1.60     | 2.10              | 0.10                          | 0.13 | 92.01         | 1460.11         | 1.15              | 32.59               |        | 45.5                  | 59.8                                 |         | 37.5        |
| Spearfish            | 1825.8                                                                        | 73.2          | 65.0               | 1.3            | 1.60     | 3.04              | 0.05                          | 0.10 | 45.72         | 1505.83         | 1.21              | 32.26               |        | 28.2                  | 53.6                                 |         | 39.1        |
| Opeche               | 1898.9                                                                        | 48.2          | 66.3               | 0.9            | 1.50     | 3.04              | 0.03                          | 0.06 | 32.11         | 1537.93         | 1.23              | 31.69               |        | 29.3                  | 59.3                                 |         | 39.1        |
| Broom Creek          | 1947.1                                                                        | 117.3         | 67.2               | 2.1            | 2.30     | 3.04              | 0.12                          | 0.15 | 51.02         | 1588.95         | 1.23              | 31.39               |        | 41.9                  | 55.4                                 |         | 38.5        |
| Tyler                | 2064.4                                                                        | 45.4          | 69.3               | 1.9            | 1.20     | 2.68              | 0.02                          | 0.05 | 37.85         | 1626.80         | 1.27              | 30.65               |        | 49.9                  | 111.5                                |         | 38.9        |
| Big Snowy            | 2109.8                                                                        | 75.3          | 71.2               | 1.6            | 1.60     | 3.62              | 0.05                          | 0.12 | 47.05         | 1673.85         | 1.26              | 30.88               |        | 34.2                  | 77.4                                 |         | 38.9        |
| Kibbey Lime          | 2185.1                                                                        | 46.0          | 72.8               | 0.7            | 2.70     | 3.62              | 0.05                          | 0.07 | 17.05         | 1690.90         | 1.29              | 30.55               |        | 41.7                  | 55.8                                 |         | 39.5        |
| Madison              | 2231.1                                                                        | 84.5          | 73.6               | 1.1            | 3.05     | 3.45              | 0.11                          | 0.13 | 27.71         | 1718.61         | 1.30              | 30.24               |        | 39.3                  | 44.5                                 |         | 39.3        |
| вон                  | 2315.7                                                                        |               | 74.6               |                |          |                   |                               |      |               |                 |                   |                     |        |                       |                                      |         | 59.5        |
|                      |                                                                               |               |                    |                |          |                   |                               |      |               |                 |                   |                     |        |                       |                                      |         |             |
|                      |                                                                               |               |                    |                |          | $\Sigma =$        | 1.46                          | 2.09 |               |                 |                   |                     |        |                       |                                      |         |             |
| Notes                |                                                                               |               |                    |                |          |                   |                               |      |               |                 | Average           |                     |        | 39.7                  | 63.4                                 | 39.9    | 34.2        |
| 1 - Thermal conduct  | tivity derived                                                                | d from grap   | hical metho        | d              |          |                   |                               |      |               |                 | Wtd Averag        | ge                  |        | 43.1                  | 61.8                                 |         |             |
| 2 - Thermal conduct  | tivity used b                                                                 | y Nordeng a   | and Neshein        | n (2011) ai    | nd Norde | ng (2014)         |                               |      |               |                 | Shallow           |                     |        |                       |                                      | 38.1    | 13.3        |
| 3 - Weighted averag  | ge of graphic                                                                 | al thermal    | conductivity       | /              |          |                   |                               |      |               |                 | Deep              |                     | 40     |                       |                                      | 38.3    | 38.4        |
| 4 - Weighted averag  | ge of Norder                                                                  | ng's therma   | l conductivit      | ty             |          |                   |                               |      |               |                 |                   |                     |        |                       |                                      |         |             |
| 5 - Harmonic mean    | of thermal c                                                                  | onductivity   | ,                  |                |          |                   |                               |      |               |                 |                   |                     |        |                       |                                      |         |             |
| 6 - Heat flow derive | d from grap                                                                   | hical metho   | bd                 |                |          |                   |                               |      |               |                 |                   |                     |        |                       |                                      |         |             |
| 7- Heat flow derived | d from Equat                                                                  | tion 1 for ea | ach formatio       | on             |          |                   |                               |      |               |                 |                   |                     |        |                       |                                      |         |             |
| 8 - Heat Flow derive | ed from Equa                                                                  | ation 1 and   | Nordengs $\lambda$ |                |          |                   |                               |      |               |                 |                   |                     |        |                       |                                      |         |             |
| 9 - Heat flow derive | d from Bulla                                                                  | rd's Metho    | d                  |                |          |                   |                               |      |               |                 |                   |                     |        |                       |                                      |         |             |
| 10 - Heat flow deriv | 10 - Heat flow derived using harmonic mean method                             |               |                    |                |          |                   |                               |      |               |                 |                   |                     |        |                       |                                      |         |             |
| 11- FU/HC/FH - Fort  | FU/HC/FH - Fort Union Group/Hell Creek Formation/Fox Hills Formation combined |               |                    |                |          |                   |                               |      |               |                 |                   |                     |        |                       |                                      |         |             |

## Summary of Heat Flow Calculations NDIC 13666 Rieder 1-9 SWD Williams County, ND

|                        | Depth (Z)     | Δz            | Temp (T)     | Δт         | $\lambda^1$ | λ <sup>2</sup> | $\lambda_{wtd}^{3}$             | $\lambda_{Nwtd}^4$ | ΔZ <sub>i</sub> /λ | Ri              | λ <sub>bi</sub> 5                 | grad,               | Q <sub>graph</sub> <sup>6</sup> | Q, <sup>7</sup> | Q <sub>N</sub> <sup>8</sup> | Q <sub>Bullard</sub> 9 | Q <sub>bi</sub> <sup>10</sup> |
|------------------------|---------------|---------------|--------------|------------|-------------|----------------|---------------------------------|--------------------|--------------------|-----------------|-----------------------------------|---------------------|---------------------------------|-----------------|-----------------------------|------------------------|-------------------------------|
| Formation              | (r            | n)            | (°(          | c)         |             | Wm             | 1 <sup>-1</sup> K <sup>-1</sup> |                    | w                  | К <sup>-1</sup> | W m <sup>-1</sup> K <sup>-1</sup> | °C km <sup>-1</sup> | 8.00                            | _               | mW m <sup>-2</sup>          | Dunard                 |                               |
| FU/HC/FH <sup>11</sup> | 12.2          | 693.7         | 5.2          | 26.9       | 1.25        | 1.72           | 0.32                            | 0.44               | 554.98             | 554.98          |                                   |                     |                                 | 48.4            | 66.6                        |                        |                               |
| Pierre                 | 705.9         | 557.5         | 32.0         | 24.1       | 1.10        | 1.62           | 0.22                            | 0.33               | 506.80             | 1061.78         | 0.66                              | 38.72               |                                 | 47.6            | 70.1                        |                        | 25.7                          |
| Niobrara               | 1263.4        | 128.0         | 56.2         | 6.4        | 1.00        | 1.62           | 0.05                            | 0.08               | 128.02             | 1189.80         | 1.06                              | 40.76               |                                 | 49.8            | 80.6                        |                        | 43.3                          |
| Greenhorn              | 1391.4        | 110.9         | 62.5         | 6.0        | 1.00        | 1.62           | 0.04                            | 0.07               | 110.95             | 1300.74         | 1.07                              | 41.60               |                                 | 54.1            | 87.6                        |                        | 44.5                          |
| Mowry                  | 1502.4        | 43.9          | 68.5         | 2.0        | 1.10        | 1.80           | 0.02                            | 0.03               | 39.90              | 1340.64         | 1.12                              | 42.53               |                                 | 48.9            | 80.0                        |                        | 47.7                          |
| Newcastle              | 1546.3        | 55.2          | 70.5         | 2.7        | 1.50        | 1.80           | 0.03                            | 0.04               | 36.78              | 1377.42         | 1.12                              | 42.58               |                                 | 72.8            | 87.4                        |                        | 47.8                          |
| Inyan Kara             | 1601.4        | 169.8         | 73.2         | 4.5        | 1.60        | 2.35           | 0.10                            | 0.15               | 106.11             | 1483.53         | 1.08                              | 42.79               |                                 | 42.4            | 62.3                        |                        | 46.2                          |
| Swift                  | 1771.2        | 159.4         | 77.7         | 5.7        | 1.20        | 2.35           | 0.07                            | 0.14               | 132.84             | 1616.37         | 1.10                              | 41.22               |                                 | 43.0            | 84.2                        |                        | 45.2                          |
| Rierdon                | 1930.6        | 186.5         | 83.4         | 6.5        | 1.50        | 2.35           | 0.10                            | 0.16               | 124.36             | 1740.73         | 1.11                              | 40.77               |                                 | 52.5            | 82.2                        |                        | 45.2                          |
| Spearfish              | 2117.1        | 150.0         | 89.9         | 3.0        | 1.80        | 3.04           | 0.10                            | 0.17               | 83.31              | 1824.04         | 1.16                              | 40.26               |                                 | 36.0            | 60.8                        |                        | 46.7                          |
| Broom Creek            | 2267.1        | 52.7          | 92.9         | 1.2        | 2.20        | 3.04           | 0.04                            | 0.06               | 23.97              | 1848.01         | 1.23                              | 38.91               |                                 | 49.4            | 68.2                        |                        | 47.7                          |
| Tyler                  | 2319.8        | 46.6          | 94.1         | 2.0        | 1.20        | 2.68           | 0.02                            | 0.05               | 38.86              | 1886.87         | 1.23                              | 38.53               |                                 | 50.9            | 113.7                       |                        | 47.4                          |
| Big Snowy              | 2366.5        | 116.4         | 96.1         | 3.9        | 1.60        | 3.62           | 0.07                            | 0.15               | 72.77              | 1959.64         | 1.21                              | 38.61               |                                 | 53.4            | 120.9                       |                        | 46.6                          |
| Kibbey Lime            | 2482.9        | 44.8          | 99.9         | 1.1        | 2.70        | 3.62           | 0.04                            | 0.06               | 16.59              | 1976.24         | 1.26                              | 38.37               |                                 | 67.3            | 90.2                        |                        | 48.2                          |
| Madison Group          | 2527.7        | 208.1         | 101.1        | 2.1        | 3.05        | 3.62           | 0.23                            | 0.28               | 68.23              | 2044.47         | 1.24                              | 38.13               |                                 | 30.7            | 36.4                        |                        | 47.1                          |
| вон                    | 2735.8        |               | 103.2        |            |             |                |                                 |                    |                    |                 |                                   |                     |                                 |                 |                             |                        |                               |
|                        |               |               |              |            |             | Σ =            | 1.45                            | 2.18               |                    |                 |                                   |                     |                                 |                 |                             |                        |                               |
| Notes                  |               |               |              | •          | -           |                |                                 |                    |                    |                 | Average                           |                     |                                 | 49.8            | 79.4                        | 48                     | 45                            |
| 1 - Thermal conduct    | tivity derive | d from grap   | hical metho  | d          |             |                |                                 |                    |                    |                 | Wtd Averag                        | ge                  |                                 | 52.1            | 77.9                        |                        |                               |
| 2 - Thermal conduct    | tivity used b | y Nordeng a   | and Nesheir  | n (2011) a | nd Nordei   | ng (2014)      |                                 |                    |                    |                 | Shallow                           |                     |                                 |                 |                             | 47.6                   | 34.5                          |
| 3 - Weighted average   | ge of graphic | cal thermal   | conductivity | Ý          |             |                |                                 |                    |                    |                 | Deep                              |                     | 48.5                            |                 |                             | 47.2                   | 46.7                          |
| 4 - Weighted average   | ge of Norder  | ng's therma   | l conductivi | ty         |             |                |                                 |                    |                    |                 |                                   |                     |                                 |                 |                             |                        |                               |
| 5 - Harmonic mean      | of thermal o  | conductivity  | 1            |            |             |                |                                 |                    |                    |                 |                                   |                     |                                 |                 |                             |                        |                               |
| 6 - Heat flow derive   | d from grap   | hical metho   | bd           |            |             |                |                                 |                    |                    |                 |                                   |                     |                                 |                 |                             |                        |                               |
| 7- Heat flow derived   | d from Equa   | tion 1 for ea | ach formatio | on         |             |                |                                 |                    |                    |                 |                                   |                     |                                 |                 |                             |                        |                               |
| 8 - Heat Flow derive   | ed from Equa  | ation 1 and   | Nordengs λ   |            |             |                |                                 |                    |                    |                 |                                   |                     |                                 |                 |                             |                        |                               |
| 9 - Heat flow derive   | d from Bulla  | ard's Metho   |              |            |             |                |                                 |                    |                    |                 |                                   |                     |                                 |                 |                             |                        |                               |
| 10 - Heat flow deriv   | ed using hai  | rmonic mea    | in method    |            |             |                |                                 |                    |                    |                 |                                   |                     |                                 |                 |                             | 1                      |                               |
| 11- FU/HC/FH - Fort    | Union Grou    | up/Hell Cree  | ek Formatio  | Formatio   | on combin   | ed             |                                 |                    |                    |                 |                                   |                     |                                 |                 |                             |                        |                               |

### Summary of Heat Flow Calculations NDIC 15137 Holte 6-21 Burke County, ND

|                        | Depth (Z)                                            | Δz           | Temp (T)           | Δт          | $\lambda^1$ | $\lambda_{N}^{2}$ | $\lambda_{wtd}^{3}$           | $\lambda_{Nwtd}^4$ | Δz <sub>i</sub> /λ | R <sub>i</sub>  | λ <sub>hi</sub> 5                 | grad <sub>i</sub>   | Q <sub>graph</sub> <sup>6</sup> | Q <sub>2</sub> <sup>7</sup> | <b>Q</b> <sub>N</sub> <sup>8</sup> | 9<br>Q <sub>Bullard</sub> | <b>Q</b> <sub>hi</sub> <sup>10</sup> |
|------------------------|------------------------------------------------------|--------------|--------------------|-------------|-------------|-------------------|-------------------------------|--------------------|--------------------|-----------------|-----------------------------------|---------------------|---------------------------------|-----------------------------|------------------------------------|---------------------------|--------------------------------------|
| Formation              | (m                                                   | ı)           | (°C                | )           |             | W m               | <sup>-1</sup> K <sup>-1</sup> |                    | w                  | K <sup>-1</sup> | W m <sup>-1</sup> K <sup>-1</sup> | °C km <sup>-1</sup> |                                 |                             | mW m <sup>-2</sup>                 |                           |                                      |
| FU/HC/FH <sup>11</sup> | 6.7                                                  | 465.7        | 3.7                | 20.8        | 1.60        | 1.72              | 0.24                          | 0.26               | 388.11             | 388.11          |                                   |                     |                                 | 51.1                        | 73.3                               |                           |                                      |
| Pierre                 | 472.4                                                | 550.5        | 24.5               | 25.9        | 1.20        | 1.62              | 0.21                          | 0.29               | 366.98             | 755.09          | 0.70                              | 42.62               |                                 | 72.5                        | 78.4                               |                           | 28.8                                 |
| Niobrara               | 1022.9                                               | 114.6        | 50.3               | 7.2         | 1.10        | 1.62              | 0.04                          | 0.06               | 143.26             | 898.35          | 1.09                              | 45.49               |                                 | 35.6                        | 72.0                               |                           | 45.0                                 |
| Greenhorn              | 1137.5                                               | 84.1         | 57.5               | 5.6         | 1.00        | 1.62              | 0.03                          | 0.04               | 70.10              | 968.45          | 1.20                              | 45.31               |                                 | 117.0                       | 157.9                              |                           | 50.6                                 |
| Mowry                  | 1221.6                                               | 37.2         | 63.1               | 1.9         | 1.10        | 1.80              | 0.01                          | 0.02               | 41.32              | 1009.77         | 1.25                              | 48.92               |                                 | 46.5                        | 93.0                               |                           | 56.4                                 |
| Newcastle              | 1258.8                                               | 61.3         | 65.0               | 3.4         | 1.00        | 1.80              | 0.02                          | 0.04               | 55.70              | 1065.46         | 1.21                              | 49.01               |                                 | 62.6                        | 102.5                              |                           | 55.3                                 |
| Inyan Kara             | 1320.1                                               | 103.0        | 68.4               | 3.2         | 1.50        | 2.35              | 0.05                          | 0.08               | 64.39              | 1129.85         | 1.19                              | 49.38               |                                 | 48.1                        | 70.7                               |                           | 55.3                                 |
| Swift                  | 1423.1                                               | 128.3        | 71.6               | 5.8         | 1.90        | 2.10              | 0.08                          | 0.09               | 53.47              | 1183.32         | 1.21                              | 47.97               |                                 | 108.7                       | 95.1                               |                           | 55.4                                 |
| Rierdon                | 1551.4                                               | 187.1        | 77.4               | 7.5         | 1.40        | 2.10              | 0.08                          | 0.13               | 74.86              | 1258.18         | 1.18                              | 47.75               |                                 | 94.0                        | 78.9                               |                           | 56.6                                 |
| Spearfish              | 1738.6                                               | 132.6        | 84.9               | 3.2         | 2.10        | 3.04              | 0.09                          | 0.13               | 88.39              | 1346.57         | 1.27                              | 46.65               |                                 | 40.7                        | 82.4                               |                           | 58.1                                 |
| Kibbey                 | 1871.2                                               | 54.9         | 88.1               | 1.3         | 2.20        | 3.64              | 0.04                          | 0.06               | 30.48              | 1377.05         | 1.34                              | 45.26               |                                 | 41.4                        | 83.7                               |                           | 59.4                                 |
| Madison                | 1926.0                                               | 99.4         | 89.3               | 2.0         | 3.10        | 3.45              | 0.10                          | 0.11               | 32.58              | 1409.63         | 1.35                              | 44.63               |                                 | 62.2                        | 70.4                               |                           | 58.9                                 |
| Ratcliffe              | 2025.4                                               | 18.0         | 91.3               | 0.4         | 2.60        | 3.45              | 0.02                          | 0.02               | 7.49               | 1417.12         | 1.41                              | 43.43               |                                 | 51.9                        | 74.6                               |                           | 60.0                                 |
| Last Salt              | 2043.4                                               | 61.6         | 91.7               | 1.4         | 2.60        | 3.45              | 0.05                          | 0.07               | 18.66              | 1435.78         | 1.40                              | 43.24               |                                 | 76.2                        | 79.7                               |                           | 59.5                                 |
| Frobisher              | 2104.9                                               | 171.3        | 93.2               | 4.5         | 2.80        | 3.45              | 0.15                          | 0.19               | 47.58              | 1483.36         | 1.38                              | 42.65               |                                 | 94.6                        | 90.6                               |                           | 58.6                                 |
| Lodgepole              | 2276.2                                               | 178.3        | 97.7               | 5.0         | 2.00        | 3.45              | 0.11                          | 0.20               | 50.95              | 1534.31         | 1.41                              | 41.41               |                                 | 97.2                        | 95.8                               |                           | 59.5                                 |
| Bakken                 | 2454.6                                               | 30.8         | 102.6              | 1.3         | 1.20        | 4.00              | 0.01                          | 0.04               | 30.78              | 1565.09         | 1.50                              | 40.42               |                                 | 41.9                        | 167.5                              |                           | 61.4                                 |
| Three Forks            | 2485.3                                               | 64.6         | 103.9              | 2.0         | 2.00        | 4.00              | 0.04                          | 0.08               | 26.92              | 1592.02         | 1.49                              | 40.44               |                                 | 75.5                        | 125.9                              |                           | 61.2                                 |
| Birdbear               | 2550.0                                               | 29.9         | 105.9              | 0.8         | 2.40        | 4.00              | 0.02                          | 0.04               | 19.91              | 1611.93         | 1.52                              | 40.21               |                                 | 42.1                        | 112.3                              |                           | 61.7                                 |
| Duperow                | 2579.8                                               | 146.6        | 106.7              | 3.5         | 2.90        | 4.00              | 0.14                          | 0.19               | 43.12              | 1655.05         | 1.49                              | 40.07               |                                 | 81.4                        | 95.8                               |                           | 60.6                                 |
| Souris River           | 2726.4                                               | 103.3        | 110.3              | 2.4         | 2.80        | 3.09              | 0.09                          | 0.10               | 35.63              | 1690.68         | 1.54                              | 39.20               |                                 | 67.5                        | 71.9                               |                           | 61.4                                 |
| Dawson Bay             | 2829.8                                               | 46.6         | 112.7              | 0.9         | 2.30        | 3.09              | 0.03                          | 0.05               | 21.20              | 1711.88         | 1.58                              | 38.62               |                                 | 42.2                        | 59.3                               |                           | 62.0                                 |
| Prairie Evaporite      | 2876.4                                               | 173.1        | 113.6              | 2.7         | 3.60        | 2.18              | 0.20                          | 0.12               | 41.22              | 1753.10         | 1.57                              | 38.30               |                                 | 66.4                        | 34.5                               |                           | 61.1                                 |
| Winnepegosis           | 3049.5                                               | 43.0         | 116.3              | 1.0         | 2.50        | 2.83              | 0.03                          | 0.04               | 15.92              | 1769.02         | 1.64                              | 37.02               |                                 | 61.4                        | 64.4                               |                           | 62.1                                 |
| Interlake              | 3092.5                                               | 15.2         | 117.3              | 0.3         | 2.70        | 3.72              | 0.01                          | 0.02               | 5.06               | 1774.07         | 1.66                              | 36.82               |                                 | 67.0                        | 83.1                               |                           | 62.4                                 |
| Bottom of Well         | 3107.7                                               |              | 117.6              |             | 3           | 3.72              |                               |                    |                    |                 | 1.67                              | 36.75               |                                 |                             |                                    |                           |                                      |
|                        |                                                      |              |                    |             |             | $\Sigma =$        | 1.92                          | 2.45               |                    |                 |                                   |                     |                                 |                             |                                    |                           |                                      |
| Notes                  |                                                      |              |                    |             |             |                   |                               |                    |                    |                 | Average                           |                     |                                 | 60.0                        | 87.7                               | 60.5                      | 58                                   |
| 1 - Thermal conduct    | ivity derived                                        | I from grap  | hical metho        | d           |             |                   |                               |                    |                    |                 | Wtd Averag                        | ge                  |                                 | 70.3                        | 90.0                               |                           |                                      |
| 2 - Thermal conduct    | ivity used by                                        | / Nordeng a  | nd Neshein         | n (2011) ai | nd Norder   | ng (2014)         |                               |                    |                    |                 | Shallow                           |                     |                                 |                             |                                    | 55.6                      | 57.8                                 |
| 3 - Weighted averag    | e of graphic                                         | al thermal o | conductivity       |             |             |                   |                               |                    |                    |                 | Deep                              |                     | 60                              |                             |                                    | 60.8                      | 60.4                                 |
| 4 - Weighted averag    | e of Norden                                          | g's thermal  | conductivit        | ÿ           |             |                   |                               |                    |                    |                 |                                   |                     |                                 |                             |                                    |                           |                                      |
| 5 - Harmonic mean      | of thermal c                                         | onductivity  |                    |             |             |                   |                               |                    |                    |                 |                                   |                     |                                 |                             |                                    |                           |                                      |
| 6 - Heat flow derive   | Heat flow derived from graphical method              |              |                    |             |             |                   |                               |                    |                    |                 |                                   |                     |                                 |                             |                                    |                           |                                      |
| 7- Heat flow derived   | Heat flow derived from Equation 1 for each formation |              |                    |             |             |                   |                               |                    |                    |                 |                                   |                     |                                 |                             |                                    |                           |                                      |
| 8 - Heat Flow derive   | d from Equa                                          | tion 1 and   | Nordengs $\lambda$ |             |             |                   |                               |                    |                    |                 |                                   |                     |                                 |                             |                                    |                           |                                      |
| 9 - Heat flow derive   | d from Bulla                                         | rd's Metho   | d                  |             |             |                   |                               |                    |                    |                 |                                   |                     |                                 |                             |                                    |                           |                                      |
| 10 - Heat flow deriv   | ed using har                                         | monic mea    | n method           |             |             |                   |                               |                    |                    |                 |                                   |                     |                                 |                             |                                    |                           |                                      |
| 11- FU/HC/FH - Fort    | Union Grou                                           | p/Hell Cree  | k Formatior        | n/Fox Hills | Formatio    | n combin          | ed                            |                    |                    |                 |                                   |                     |                                 |                             |                                    |                           |                                      |

## Summary of Heat Flow Calculations NDIC 15593 FHMU K-810 Billings County, ND

|                        | Depth (Z)     | Δz            | Temp (T)     | Δτ          | $\lambda^1$ | λ <sup>2</sup> | λ3                            | λ    | ΛΖ./λ  | R.              | λ. <sup>5</sup>                   | grad.               | 06     | 0,7  | 08                     | <b>O</b> <sub>2</sub> | <b>0</b> <sup>10</sup> |
|------------------------|---------------|---------------|--------------|-------------|-------------|----------------|-------------------------------|------|--------|-----------------|-----------------------------------|---------------------|--------|------|------------------------|-----------------------|------------------------|
| Formation              | (r            | n)            | (°C          | :)          |             | W m            | <sup>-1</sup> K <sup>-1</sup> | Nwta | W      | K <sup>-1</sup> | W m <sup>-1</sup> K <sup>-1</sup> | °C km <sup>-1</sup> | ∽grapn | 2    | <br>mW m <sup>-2</sup> | Sullard               | <u>~ni</u>             |
| FU/HC/FH <sup>11</sup> | 0.0           | , 599.9       | 8.7          | 23.3        | 1.50        | 1.72           | 0.33                          | 0.38 | 399.92 | 399.92          |                                   |                     |        | 58.2 | 66.7                   |                       |                        |
| Pierre                 | 585.2         | 630.3         | 31.9         | 33.5        | 1.05        | 1.62           | 0.25                          | 0.38 | 600.31 | 1000.23         | 0.60                              | 38.78               |        | 55.8 | 86.1                   |                       | 52.4                   |
| Niobrara               | 1236.3        | 95.4          | 65.4         | 4.7         | 1.10        | 1.62           | 0.04                          | 0.06 | 86.73  | 1086.96         | 1.14                              | 46.14               |        | 54.3 | 79.9                   |                       | 52.9                   |
| Carlisle               | 1332.0        | 88.1          | 70.1         | 4.4         | 1.10        | 1.62           | 0.04                          | 0.05 | 80.08  | 1167.04         | 1.14                              | 46.37               |        | 54.7 | 80.6                   |                       | 50.3                   |
| Greenhorn              | 1413.4        | 162.2         | 74.5         | 9.6         | 1.10        | 1.62           | 0.07                          | 0.10 | 147.41 | 1314.45         | 1.08                              | 46.58               |        | 65.0 | 95.8                   |                       | 56.1                   |
| Mowry                  | 1579.5        | 37.5          | 84.1         | 2.5         | 1.10        | 1.80           | 0.02                          | 0.03 | 34.08  | 1348.53         | 1.17                              | 47.87               |        | 72.5 | 118.7                  |                       | 55.5                   |
| Newcastle              | 1618.5        | 72.8          | 86.6         | 5.7         | 1.20        | 1.80           | 0.03                          | 0.05 | 60.71  | 1409.24         | 1.15                              | 48.29               |        | 93.7 | 140.6                  |                       | 53.2                   |
| Inyan Kara             | 1696.2        | 251.5         | 92.3         | 8.8         | 1.50        | 2.35           | 0.14                          | 0.22 | 167.64 | 1576.88         | 1.07                              | 49.58               |        | 52.7 | 82.6                   |                       | 56.3                   |
| Rierdon                | 1943.7        | 126.5         | 101.1        | 3.7         | 1.80        | 2.10           | 0.08                          | 0.10 | 70.27  | 1647.15         | 1.18                              | 47.71               |        | 52.3 | 61.1                   |                       | 55.8                   |
| Spearfish              | 2077.0        | 186.8         | 104.8        | 4.7         | 2.30        | 3.04           | 0.16                          | 0.21 | 81.24  | 1728.39         | 1.20                              | 46.57               |        | 57.8 | 76.4                   |                       | 57.0                   |
| Opeche                 | 2268.7        | 94.5          | 109.5        | 1.2         | 2.10        | 3.05           | 0.07                          | 0.11 | 44.99  | 1773.38         | 1.27                              | 44.79               |        | 27.7 | 40.2                   |                       | 55.6                   |
| Minnelusa              | 2364.2        | 181.3         | 110.7        | 3.8         | 2.70        | 3.04           | 0.18                          | 0.21 | 67.14  | 1840.52         | 1.28                              | 43.51               |        | 56.0 | 63.1                   |                       | 56.7                   |
| Otter                  | 2531.9        | 42.5          | 114.5        | 1.8         | 1.40        | 3.62           | 0.02                          | 0.06 | 30.39  | 1870.91         | 1.35                              | 41.88               |        | 59.2 | 153.1                  |                       | 56.8                   |
| Kibbey                 | 2574.4        | 82.7          | 116.3        | 2.2         | 3.00        | 3.62           | 0.09                          | 0.11 | 27.57  | 1898.48         | 1.36                              | 41.89               |        | 79.8 | 96.3                   |                       | 57.7                   |
| Madison                | 2657.1        | 29.1          | 118.5        | 0.7         | 3.05        | 3.45           | 0.03                          | 0.04 | 9.53   | 1908.01         | 1.39                              | 41.41               |        | 68.2 | 77.2                   |                       | 58.6                   |
| Bottom of Well         | 2694.3        |               | 119.1        |             |             |                |                               |      |        |                 |                                   |                     |        |      |                        |                       |                        |
|                        |               |               |              |             |             | $\Sigma =$     | 1.56                          | 2.10 |        |                 |                                   |                     |        |      |                        |                       |                        |
| Notes                  |               |               |              |             |             |                |                               |      |        |                 | Average                           |                     |        | 60.5 | 87.9                   | 58.4                  | 52.4                   |
| 1 - Thermal conduct    | tivity derive | d from grap   | hical metho  | d           |             |                |                               |      |        |                 | Wtd Avera                         | ge                  |        | 64.1 | 86.2                   |                       |                        |
| 2 - Thermal conduct    | tivity used b | y Nordeng a   | and Nesheir  | n (2011) a  | nd Nordei   | ng (2014)      |                               |      |        |                 | Shallow                           |                     |        |      |                        | 55.8                  | 37.9                   |
| 3 - Weighted average   | ge of graphic | cal thermal   | conductivity | /           |             |                |                               |      |        |                 | Deep                              |                     | 58.0   |      |                        | 58.8                  | 55.3                   |
| 4 - Weighted average   | ge of Nordei  | ng's therma   | l conductivi | ty          |             |                |                               |      |        |                 |                                   |                     |        |      |                        |                       |                        |
| 5 - Harmonic mean      | of thermal of | conductivity  | ,            |             |             |                |                               |      |        |                 |                                   |                     |        |      |                        |                       |                        |
| 6 - Heat flow derive   | d from grap   | hical metho   | bd           |             |             |                |                               |      |        |                 |                                   |                     |        |      |                        |                       |                        |
| 7- Heat flow derived   | d from Equa   | tion 1 for ea | ach formatio | on          |             |                |                               |      |        |                 |                                   |                     |        |      |                        |                       |                        |
| 8 - Heat Flow derive   | ed from Equ   | ation 1 and   | Nordengs λ   |             |             |                |                               |      |        |                 |                                   |                     |        |      |                        |                       |                        |
| 9 - Heat flow derive   | d from Bulla  | ard's Metho   | d            |             |             |                |                               |      |        |                 |                                   |                     |        |      |                        |                       |                        |
| 10 - Heat flow deriv   | ed using ha   | rmonic mea    | n method     |             |             |                |                               |      |        |                 |                                   |                     |        |      |                        |                       |                        |
| 11- FU/HC/FH - Fort    | Union Grou    | up/Hell Cree  | ek Formatio  | n/Fox Hills | Formatio    | n combin       |                               |      |        |                 |                                   |                     |        |      | İ                      |                       |                        |

## Summary of Heat Flow Calculations NDIC 15875 Ann 1 McKenzie County, ND

|                      | Denth (7)     | Λ7            | Temp (T)     | АТ          | $\lambda^1$ | 2 <sup>2</sup> | 2 3                           | 24   | A7 /)    | R               | λ <sup>5</sup>                                 | grad                | 0.6    | 07                    | 0 <sup>8</sup>     | 09      | 0 10        |
|----------------------|---------------|---------------|--------------|-------------|-------------|----------------|-------------------------------|------|----------|-----------------|------------------------------------------------|---------------------|--------|-----------------------|--------------------|---------|-------------|
| Formation            | (r            | <br>n)        | 1°C          | <u>יי</u>   |             | ~∿N<br>W/m     | <sup>-1</sup> K <sup>-1</sup> | Nwtd | <u> </u> | к <sup>-1</sup> | $M_{\rm hi}$ W m <sup>-1</sup> K <sup>-1</sup> | °C km <sup>-1</sup> | ≺graph | <b>Q</b> <sub>2</sub> | mW m <sup>-2</sup> | Bullard | <b>A</b> hi |
| Till                 | 0.0           | 24            | 01           | .,          | 1 20        | 1 72           |                               | 0.00 | 2.03     | 2 03            | win k                                          | CKIII               |        | 20 /                  | 56.4               |         |             |
|                      | 0.0           | 606 Q         | 0.1          | 21.4        | 1.20        | 1 72           | 0.00                          | 0.00 | 122.03   | 125 50          | 0.01                                           | 27.91               |        | /0.2                  | 50.4<br>60.6       |         | 0.2         |
| Pierre               | 609.3         | 864.7         | 30.6         | /11 5       | 1.40        | 1.72           | 0.27                          | 0.33 | 786 11   | 433.30          | 0.01                                           | 35.24               |        | 49.3<br>52.7          | 77 7               |         | 17.6        |
| Greenhorn            | 1474.0        | 121 9         | 72 1         | 7.4         | 1.10        | 1.02           | 0.30                          | 0.45 | 110.84   | 1332 44         | 1 11                                           | 42.69               |        | 66.5                  | 97.9               |         | 47.2        |
| Mowry                | 1595.9        | 48.5          | 79.4         | 2.3         | 1.10        | 1.80           | 0.02                          | 0.03 | 48.46    | 1380.91         | 1.16                                           | 44.05               |        | 47.5                  | 85.4               |         | 50.9        |
| Newcastle            | 1644.4        | 83.8          | 81.7         | 4.2         | 1.20        | 1.80           | 0.03                          | 0.05 | 69.85    | 1450.76         | 1.13                                           | 44.15               |        | 59.4                  | 89.1               |         | 50.0        |
| Invan Kara           | 1728.2        | 125.0         | 85.9         | 3.1         | 1.40        | 2.35           | 0.06                          | 0.09 | 89.26    | 1540.02         | 1.12                                           | 44.41               |        | 34.8                  | 58.5               |         | 49.8        |
| Swift                | 1853.2        | 147.8         | 89.0         | 6.0         | 1.40        | 2.10           | 0.07                          | 0.10 | 105.59   | 1645.61         | 1.13                                           | 43.09               |        | 57.0                  | 85.5               |         | 48.5        |
| Rierdon              | 2001.0        | 172.2         | 95.0         | 5.9         | 1.60        | 2.10           | 0.09                          | 0.12 | 107.63   | 1753.24         | 1.14                                           | 42.92               |        | 55.0                  | 72.2               |         | 49.0        |
| Spearfish            | 2173.2        | 140.5         | 100.9        | 2.7         | 1.80        | 3.04           | 0.08                          | 0.14 | 78.06    | 1831.31         | 1.19                                           | 42.24               |        | 34.1                  | 57.5               |         | 50.1        |
| Minnekahta/Opeche    | 2313.7        | 113.4         | 103.6        | 2.2         | 2.60        | 3.04           | 0.09                          | 0.11 | 43.61    | 1874.92         | 1.23                                           | 40.83               |        | 50.0                  | 58.4               |         | 50.4        |
| Broom Creek          | 2427.1        | 61.9          | 105.8        | 1.4         | 2.40        | 3.04           | 0.05                          | 0.06 | 25.78    | 1900.70         | 1.28                                           | 39.82               |        | 53.1                  | 67.3               |         | 50.8        |
| Tyler                | 2489.0        | 61.9          | 107.2        | 3.6         | 1.20        | 2.68           | 0.02                          | 0.05 | 51.56    | 1952.26         | 1.27                                           | 39.38               |        | 69.2                  | 154.6              |         | 50.2        |
| Big Snowy            | 2550.9        | 106.1         | 110.7        | 3.0         | 1.50        | 3.62           | 0.05                          | 0.12 | 70.71    | 2022.97         | 1.26                                           | 39.82               |        | 43.0                  | 103.7              |         | 50.2        |
| Kibbey Lime          | 2656.9        | 55.2          | 113.8        | 1.0         | 2.70        | 3.62           | 0.05                          | 0.06 | 20.43    | 2043.41         | 1.30                                           | 39.38               |        | 49.9                  | 66.9               |         | 51.2        |
| Madison              | 2712.1        | 192.6         | 114.8        | 3.1         | 3.05        | 3.45           | 0.19                          | 0.21 | 63.16    | 2106.56         | 1.29                                           | 38.95               |        | 49.7                  | 56.2               |         | 50.1        |
| Ratcliffe            | 2904.7        | 65.8          | 117.9        | 1.5         | 3.05        | 3.45           | 0.06                          | 0.07 | 21.59    | 2128.15         | 1.36                                           | 37.45               |        | 68.1                  | 77.0               |         | 51.1        |
| Frobisher            | 2970.6        | 168.0         | 119.4        | 3.7         | 3.05        | 3.45           | 0.16                          | 0.18 | 55.08    | 2183.24         | 1.36                                           | 37.11               |        | 66.8                  | 75.6               |         | 50.5        |
| Bottom of Well       | 3138.6        |               | 123.1        |             |             |                |                               |      |          |                 |                                                |                     |        |                       |                    |         |             |
|                      |               |               |              |             |             | Σ =            | 1.63                          | 2.24 |          |                 |                                                |                     |        |                       |                    |         |             |
| Notes                |               |               |              |             |             |                |                               |      |          |                 | Average                                        |                     |        | 52.5                  | 77.8               | 51.9    | 45.2        |
| 1 - Thermal conduct  | ivity derive  | d from grap   | hical metho  | d           |             |                |                               |      |          |                 | Wtd Averag                                     | ge                  |        | 59.3                  | 81.3               |         |             |
| 2 - Thermal conduct  | ivity used b  | y Nordeng a   | and Neshein  | n (2011) aı | nd Norde    | ng (2014)      |                               |      |          |                 | Shallow                                        |                     |        |                       |                    | 49.3    | 17.6        |
| 3 - Weighted average | e of graphic  | cal thermal   | conductivity | /           |             |                |                               |      |          |                 | Deep                                           |                     | 52.0   |                       |                    | 50.9    | 50.0        |
| 4 - Weighted averag  | e of Norder   | ng's therma   | l conductivi | ty          |             |                |                               |      |          |                 |                                                |                     |        |                       |                    |         |             |
| 5 - Harmonic mean    | of thermal of | conductivity  | 1            |             |             |                |                               |      |          |                 |                                                |                     |        |                       |                    |         |             |
| 6 - Heat flow derive | d from grap   | hical metho   | bd           |             |             |                |                               |      |          |                 |                                                |                     |        |                       |                    |         |             |
| 7- Heat flow derived | l from Equa   | tion 1 for ea | ach formatio | on          |             |                |                               |      |          |                 |                                                |                     |        |                       |                    |         |             |
| 8 - Heat Flow derive | d from Equ    | ation 1 and   | Nordengs λ   |             |             |                |                               |      |          |                 |                                                |                     |        |                       |                    |         |             |
| 9 - Heat flow derive | d from Bulla  | ard's Metho   | d            |             |             |                |                               |      |          |                 |                                                |                     |        |                       |                    |         |             |
| 10 - Heat flow deriv | ed using ha   | rmonic mea    | n method     |             | _           |                |                               |      |          |                 |                                                |                     |        |                       |                    |         |             |
| 11- FU/HC/FH - Fort  | Union Grou    | up/Hell Cree  | ek Formatio  | n/Fox Hills | Formatic    | on combin      | ed                            |      |          |                 |                                                |                     |        |                       |                    |         |             |

## Summary of Heat Flow Calculations NDIC 16160 Nelson 1-11H McClean County, ND

|                        | Depth (Z)      | Δz            | Temp (T)           | Δт          | $\lambda^1$ | λ. <sup>2</sup> | $\lambda_{\rm wtd}^{3}$         | $\lambda_{Nwtd}^4$ | ΔZ;/λ  | R,              | λ <sub>bi</sub> 5                 | grad,               | Q <sub>graph</sub> <sup>6</sup> | Q <sub>2</sub> <sup>7</sup> | Q_ <sup>8</sup>    | Q <sub>Bullard</sub> 9 | Q <sub>bi</sub> <sup>10</sup> |
|------------------------|----------------|---------------|--------------------|-------------|-------------|-----------------|---------------------------------|--------------------|--------|-----------------|-----------------------------------|---------------------|---------------------------------|-----------------------------|--------------------|------------------------|-------------------------------|
| Formation              | (n             | n)            | (°C                | :)          |             | Wm              | n <sup>-1</sup> K <sup>-1</sup> | Tinta              | w      | K <sup>-1</sup> | W m <sup>-1</sup> K <sup>-1</sup> | °C km <sup>-1</sup> | Brahn                           | -                           | mW m <sup>-2</sup> | bullaru                |                               |
| Till                   | 0.0            | 31.1          | 5.9                | 1.1         | 1.10        | 1.72            | 0.01                            | 0.02               | 28.26  | 28.26           |                                   |                     |                                 | 370.4                       | 579.2              |                        | ·                             |
| FU/HC/FH <sup>11</sup> | 31.1           | 590.7         | 6.9                | 20.2        | 1.60        | 1.72            | 0.37                            | 0.40               | 369.19 | 397.45          | 0.08                              | 325.51              |                                 | 29.2                        | 31.4               |                        | 25.5                          |
| Pierre                 | 621.8          | 709.6         | 27.1               | 34.0        | 1.30        | 1.62            | 0.36                            | 0.45               | 545.83 | 943.28          | 0.66                              | 34.16               |                                 | 62.2                        | 77.5               |                        | 22.5                          |
| Greenhorn              | 1331.4         | 98.1          | 61.1               | 6.3         | 1.00        | 1.62            | 0.04                            | 0.06               | 98.15  | 1041.42         | 1.28                              | 41.45               |                                 | 64.0                        | 103.7              |                        | 53.0                          |
| Mowry                  | 1429.5         | 53.9          | 67.4               | 2.7         | 1.10        | 1.80            | 0.02                            | 0.04               | 49.05  | 1090.47         | 1.31                              | 43.00               |                                 | 55.5                        | 90.8               |                        | 56.4                          |
| Newcastle              | 1483.5         | 79.2          | 70.1               | 3.8         | 1.30        | 1.80            | 0.04                            | 0.06               | 60.96  | 1151.43         | 1.29                              | 43.27               |                                 | 62.2                        | 86.1               |                        | 55.7                          |
| Inyan Kara             | 1562.7         | 84.1          | 73.9               | 2.4         | 1.40        | 2.35            | 0.05                            | 0.08               | 60.09  | 1211.52         | 1.29                              | 43.50               |                                 | 40.6                        | 68.2               |                        | 56.1                          |
| Swift                  | 1646.8         | 154.2         | 76.3               | 6.4         | 1.60        | 2.10            | 0.10                            | 0.13               | 96.39  | 1307.91         | 1.26                              | 42.76               |                                 | 66.7                        | 87.6               |                        | 53.8                          |
| Rierdon                | 1801.1         | 141.1         | 82.7               | 5.0         | 1.80        | 2.10            | 0.10                            | 0.12               | 78.40  | 1386.31         | 1.30                              | 42.67               |                                 | 63.5                        | 74.1               |                        | 55.4                          |
| Spearfish              | 1942.2         | 128.3         | 87.7               | 3.3         | 1.70        | 3.04            | 0.08                            | 0.15               | 75.48  | 1461.80         | 1.33                              | 42.13               |                                 | 43.9                        | 78.4               |                        | 56.0                          |
| Tyler                  | 2070.5         | 146.3         | 91.0               | 5.3         | 2.20        | 2.68            | 0.13                            | 0.15               | 66.50  | 1528.30         | 1.35                              | 41.12               |                                 | 80.3                        | 97.8               |                        | 55.7                          |
| Kibbey Lime            | 2216.8         | 62.2          | 96.4               | 1.1         | 2.00        | 3.62            | 0.05                            | 0.09               | 31.09  | 1559.39         | 1.42                              | 40.82               |                                 | 34.1                        | 61.7               |                        | 58.0                          |
| Madison                | 2279.0         | 130.5         | 97.4               | 2.4         | 3.30        | 3.45            | 0.17                            | 0.18               | 39.53  | 1598.92         | 1.43                              | 40.17               |                                 | 61.2                        | 64.0               |                        | 57.3                          |
| Ratcliffe              | 2409.4         | 79.2          | 99.8               | 1.8         | 3.00        | 3.45            | 0.09                            | 0.11               | 26.42  | 1625.33         | 1.48                              | 39.00               |                                 | 66.6                        | 76.6               |                        | 57.8                          |
| Frobisher              | 2488.7         | 80.7          | 101.6              | 1.8         | 3.30        | 3.45            | 0.10                            | 0.11               | 24.45  | 1649.78         | 1.51                              | 38.46               |                                 | 74.4                        | 77.8               |                        | 58.0                          |
| Bottom of Well         | 2569.4         |               | 103.4              |             | 3.30        |                 |                                 |                    |        |                 |                                   |                     |                                 |                             |                    |                        |                               |
|                        |                |               |                    |             |             | $\Sigma =$      | 1.70                            | 2.12               |        |                 |                                   |                     |                                 |                             |                    |                        |                               |
| Notes                  |                |               |                    |             |             |                 |                                 |                    |        |                 | Average                           |                     |                                 | 78.3                        | 110.3              | 56.2                   | 51.5                          |
| 1 - Thermal conduct    | tivity derived | d from grap   | hical metho        | d           |             |                 |                                 |                    |        |                 | Wtd Averag                        | ge                  |                                 | 64.7                        | 80.4               |                        |                               |
| 2 - Thermal conduct    | tivity used b  | y Nordeng a   | and Neshein        | n (2011) a  | nd Nordeı   | ng (2014)       |                                 |                    |        |                 | Shallow                           |                     |                                 |                             |                    | 30.1                   | 24.0                          |
| 3 - Weighted averag    | ge of graphic  | cal thermal   | conductivity       | /           |             |                 |                                 |                    |        |                 | Deep                              |                     | 59.0                            |                             |                    | 59.2                   | 56.1                          |
| 4 - Weighted averag    | ge of Norder   | ng's therma   | l conductivit      | ty          |             |                 |                                 |                    |        |                 |                                   |                     |                                 |                             |                    |                        |                               |
| 5 - Harmonic mean      | of thermal c   | conductivity  | ,                  |             |             |                 |                                 |                    |        |                 |                                   |                     |                                 |                             |                    |                        |                               |
| 6 - Heat flow derive   | d from grap    | hical metho   | bd                 |             |             |                 |                                 |                    |        |                 |                                   |                     |                                 |                             |                    |                        |                               |
| 7- Heat flow derived   | d from Equa    | tion 1 for ea | ach formatio       | on          |             |                 |                                 |                    |        |                 |                                   |                     |                                 |                             |                    |                        |                               |
| 8 - Heat Flow derive   | ed from Equa   | ation 1 and   | Nordengs $\lambda$ |             |             |                 |                                 |                    |        |                 |                                   |                     |                                 |                             |                    |                        |                               |
| 9 - Heat flow derive   | d from Bulla   | ard's Metho   | d                  |             |             |                 |                                 |                    |        |                 |                                   |                     |                                 |                             |                    |                        |                               |
| 10 - Heat flow deriv   | ed using har   | rmonic mea    | n method           |             |             |                 |                                 |                    |        |                 |                                   |                     |                                 |                             |                    |                        |                               |
| 11- FU/HC/FH - Fort    | t Union Grou   | up/Hell Cree  | ek Formatio        | n/Fox Hills | Formatio    | n combin        |                                 |                    |        |                 |                                   |                     |                                 |                             |                    |                        |                               |

## Summary of Heat Flow Calculations NDIC 16182 NDCA7 Williams County, ND

|                      | Depth (7)      | ٨7            | Temp (T)                | Δт          | λ <sup>1</sup> | 2 <sup>2</sup>        | 2 3                                       | <b>a</b> <sup>4</sup> | A7 /)             | R               | λ 5          | grad                | 0     | 07           | 0 8                               | ۹<br>۹  | 0 10        |
|----------------------|----------------|---------------|-------------------------|-------------|----------------|-----------------------|-------------------------------------------|-----------------------|-------------------|-----------------|--------------|---------------------|-------|--------------|-----------------------------------|---------|-------------|
| Formation            | (m             | - <u></u>     | رد.) مارید.<br>۱۳۵۰ (۱۷ | <u>.</u>    |                | ~ <sub>N</sub><br>₩ m | <sup>-1</sup> <sup>-1</sup> <sup>-1</sup> | Nwtd                  | ۲ <sub>۱</sub> /۸ | ν <sup>-1</sup> | $M_{\rm hi}$ | °C km <sup>-1</sup> | Graph | Q2           | Q <sub>N</sub> mW m <sup>-2</sup> | Gullard | <b>Q</b> hi |
|                      | 21.6           | 612.0         | ر <b>د</b>              | 21.0        | 1 20           | 1 72                  | 0.25                                      | 0.26                  | E10 94            | E10.94          |              | CKIII               |       | 12 0         | 61.2                              |         |             |
| Pierre               | 644.7          | 6/8 3         | 27.6                    | 21.9        | 1.20           | 1.72                  | 0.25                                      | 0.30                  | 589 37            | 1100 22         | 0.59         | 35.64               |       | 42.0<br>52.5 | 77.3                              |         | 20.9        |
| Greenhorn            | 1293.0         | 94.5          | 58.6                    | 6.0         | 1.10           | 1.02                  | 0.23                                      | 0.50                  | 94 49             | 1194 71         | 1.08         | 41.86               |       | 63.5         | 103.0                             |         | 45.3        |
| Mowry                | 1387.4         | 115.8         | 64.6                    | 6.2         | 1.10           | 2.35                  | 0.04                                      | 0.09                  | 105.29            | 1300.00         | 1.07         | 43.37               |       | 59.0         | 126.1                             |         | 46.3        |
| Invan Kara           | 1503.3         | 121.0         | 70.8                    | 3.0         | 1.50           | 2.10                  | 0.06                                      | 0.09                  | 80.67             | 1380.67         | 1.09         | 44.18               |       | 37.2         | 52.1                              |         | 48.1        |
| Swift                | 1624.3         | 133.5         | 73.8                    | 6.0         | 1.20           | 2.10                  | 0.06                                      | 0.10                  | 111.25            | 1491.92         | 1.09         | 42.71               |       | 53.9         | 94.4                              |         | 46.5        |
| Rierdon              | 1757.8         | 165.5         | 79.8                    | 6.5         | 1.30           | 3.04                  | 0.07                                      | 0.17                  | 127.31            | 1619.23         | 1.09         | 42.88               |       | 51.1         | 119.4                             | -       | 46.5        |
| Spearfish            | 1923.3         | 144.5         | 86.3                    | 3.3         | 1.40           | 3.40                  | 0.07                                      | 0.17                  | 103.20            | 1722.43         | 1.12         | 42.56               |       | 31.7         | 77.0                              |         | 47.5        |
| Minnekahta           | 2067.8         | 14.6          | 89.6                    | 0.3         | 2.55           | 3.04                  | 0.01                                      | 0.02                  | 5.74              | 1728.17         | 1.20         | 41.15               |       | 54.2         | 64.6                              |         | 49.2        |
| Opeche               | 2082.4         | 80.2          | 89.9                    | 3.6         | 1.20           | 3.04                  | 0.03                                      | 0.08                  | 66.80             | 1794.97         | 1.16         | 41.01               |       | 54.5         | 138.0                             |         | 47.6        |
| Tyler                | 2162.6         | 100.0         | 93.5                    | 2.8         | 1.30           | 2.68                  | 0.04                                      | 0.09                  | 76.90             | 1871.87         | 1.16         | 41.17               |       | 35.9         | 74.0                              |         | 47.6        |
| Kibbey               | 2262.5         | 45.7          | 96.3                    | 1.3         | 2.70           | 3.62                  | 0.04                                      | 0.06                  | 16.93             | 1888.81         | 1.20         | 40.57               |       | 79.1         | 106.0                             | -       | 48.6        |
| Madison              | 2308.3         | 159.4         | 97.6                    | 2.7         | 3.05           | 3.45                  | 0.17                                      | 0.19                  | 52.27             | 1941.07         | 1.19         | 40.34               |       | 51.9         | 58.7                              |         | 48.0        |
| Ratcliffe            | 2467.7         | 23.5          | 100.3                   | 0.4         | 2.90           | 3.45                  | 0.02                                      | 0.03                  | 8.09              | 1949.17         | 1.27         | 38.81               |       | 51.5         | 61.2                              |         | 49.1        |
| Last Salt            | 2491.1         | 223.7         | 100.7                   | 5.3         | 2.70           | 3.45                  | 0.21                                      | 0.27                  | 82.86             | 2032.03         | 1.23         | 38.61               |       | 63.9         | 81.6                              |         | 47.3        |
| Lodgepole            | 2714.9         | 179.5         | 106.0                   | 4.6         | 3.05           | 3.45                  | 0.19                                      | 0.21                  | 58.84             | 2090.86         | 1.30         | 37.37               |       | 78.5         | 88.8                              |         | 48.5        |
| Bottom of Well       | 2894.3         |               | 110.6                   |             |                |                       |                                           |                       |                   |                 |              |                     |       |              |                                   |         |             |
|                      |                |               |                         |             |                | $\Sigma =$            | 1.56                                      | 2.35                  |                   |                 |              |                     |       |              |                                   |         |             |
| Notes                |                |               |                         |             |                |                       |                                           |                       |                   |                 | Average      |                     |       | 53.8         | 86.5                              | 50.4    | 45.8        |
| 1 - Thermal conduc   | tivity derived | l from grap   | hical metho             | d           |                |                       |                                           |                       |                   |                 | Wtd Averag   | ge                  |       | 56.6         | 85.2                              |         |             |
| 2 - Thermal conduc   | tivity used by | y Nordeng a   | and Nesheim             | า (2011) a  | nd Norde       | ng (2014)             |                                           |                       |                   |                 | Shallow      |                     |       |              |                                   | 52.5    | 33.1        |
| 3 - Weighted average | ge of graphic  | al thermal    | conductivity            |             |                |                       |                                           |                       |                   |                 | Deep         |                     | 49    |              |                                   | 48.4    | 47.8        |
| 4 - Weighted average | ge of Norden   | g's therma    | l conductivit           | y           |                |                       |                                           |                       |                   |                 |              |                     |       |              |                                   |         |             |
| 5 - Harmonic mean    | of thermal c   | onductivity   |                         |             |                |                       |                                           |                       |                   |                 |              |                     |       |              |                                   |         |             |
| 6 - Heat flow derive | d from graph   | hical metho   | d                       |             |                |                       |                                           |                       |                   |                 |              |                     |       |              |                                   |         |             |
| 7- Heat flow derive  | d from Equat   | tion 1 for ea | ach formatio            | n           |                |                       |                                           |                       |                   |                 |              |                     |       |              |                                   |         |             |
| 8 - Heat Flow derive | ed from Equa   | ation 1 and   | Nordengs $\lambda$      |             |                |                       |                                           |                       |                   |                 |              |                     |       |              |                                   |         |             |
| 9 - Heat flow derive | d from Bulla   | rd's Metho    | d                       |             |                |                       |                                           |                       |                   |                 |              |                     |       |              |                                   |         |             |
| 10 - Heat flow deriv | ed using har   | monic mea     | n method                |             |                |                       |                                           |                       |                   |                 |              |                     |       |              |                                   |         |             |
| 11- FU/HC/FH - For   | t Union Grou   | p/Hell Cree   | k Formatior             | h/Fox Hills | Formatic       | on combin             | ed                                        |                       |                   |                 |              |                     |       |              |                                   |         |             |

#### Summary of Heat Flow Calculations NDIC 16376 Vernie Chapin 32-21 McKenzie County, ND

|                        | Depth (Z)      | Δz            | Temp (T)           | Δт        | λ <sup>1</sup> | $\lambda_{N}^{2}$ | $\lambda_{wtd}^{3}$           | $\lambda_{Nwtd}^{4}$ | Δz <sub>i</sub> /λ | Ri              | λ <sub>hi</sub> 5                 | grad <sub>i</sub>   | Q <sub>graph</sub> <sup>6</sup> | Q <sub>2</sub> <sup>7</sup> | Q <sub>N</sub> <sup>8</sup> | 9<br>Q <sub>Bullard</sub> | Q <sub>hi</sub> <sup>10</sup> |
|------------------------|----------------|---------------|--------------------|-----------|----------------|-------------------|-------------------------------|----------------------|--------------------|-----------------|-----------------------------------|---------------------|---------------------------------|-----------------------------|-----------------------------|---------------------------|-------------------------------|
| Formation              | (n             | n)            | (°C                | )         |                | Wm                | <sup>-1</sup> K <sup>-1</sup> |                      | w                  | K <sup>-1</sup> | W m <sup>-1</sup> K <sup>-1</sup> | °C km <sup>-1</sup> |                                 |                             | mW m <sup>-2</sup>          |                           |                               |
| FU/HC/FH <sup>11</sup> | 0.0            | , 503.2       | 5.2                | 22.5      | 1.40           | 1.72              | 0.18                          | 0.22                 | 359.45             | 359.45          |                                   |                     |                                 | 62.5                        | 76.8                        |                           |                               |
| Pierre                 | 503.2          | 783.6         | 27.6               | 39.8      | 1.15           | 1.62              | 0.23                          | 0.32                 | 681.43             | 1040.87         | 0.48                              | 44.65               |                                 | 58.4                        | 82.3                        |                           | 21.6                          |
| Greenhorn              | 1286.9         | 125.0         | 67.4               | 8.1       | 1.10           | 1.62              | 0.03                          | 0.05                 | 113.61             | 1154.48         | 1.11                              | 48.38               |                                 | 71.2                        | 104.8                       |                           | 53.9                          |
| Mowry                  | 1411.8         | 29.0          | 75.5               | 1.6       | 1.20           | 1.80              | 0.01                          | 0.01                 | 24.13              | 1178.61         | 1.20                              | 49.82               |                                 | 64.7                        | 97.0                        |                           | 59.7                          |
| Newcastle              | 1440.8         | 79.9          | 77.1               | 4.5       | 1.50           | 1.80              | 0.03                          | 0.04                 | 53.24              | 1231.85         | 1.17                              | 49.90               |                                 | 85.3                        | 102.3                       |                           | 58.4                          |
| Invan Kara             | 1520.6         | 107.9         | 81.6               | 3.0       | 1.60           | 2.35              | 0.04                          | 0.06                 | 67.44              | 1299.29         | 1.17                              | 50.27               |                                 | 43.9                        | 64.5                        |                           | 58.8                          |
| Swift                  | 1628.5         | 179.2         | 84.6               | 7.0       | 1.40           | 2.10              | 0.06                          | 0.10                 | 128.02             | 1427.30         | 1.14                              | 48.76               |                                 | 54.5                        | 81.8                        |                           | 55.6                          |
| Rierdon                | 1807.8         | 151.5         | 91.6               | 6.0       | 1.60           | 2.10              | 0.06                          | 0.08                 | 94.68              | 1521.98         | 1.19                              | 47.78               |                                 | 63.1                        | 82.8                        |                           | 56.8                          |
| Spearfish              | 1959.3         | 155.8         | 97.5               | 3.6       | 2.40           | 3.04              | 0.09                          | 0.12                 | 64.90              | 1586.88         | 1.23                              | 47.14               |                                 | 54.7                        | 69.3                        |                           | 58.2                          |
| Opeche                 | 2115.0         | 126.5         | 101.1              | 2.6       | 2.20           | 3.04              | 0.07                          | 0.10                 | 57.50              | 1644.37         | 1.29                              | 45.34               |                                 | 44.8                        | 62.0                        |                           | 58.3                          |
| Amsden                 | 2241.5         | 82.6          | 103.7              | 1.7       | 3.80           | 3.04              | 0.08                          | 0.06                 | 21.74              | 1666.11         | 1.35                              | 43.93               |                                 | 76.4                        | 61.1                        |                           | 59.1                          |
| Tyler                  | 2324.1         | 69.2          | 105.3              | 4.3       | 1.60           | 2.68              | 0.03                          | 0.05                 | 43.24              | 1709.35         | 1.36                              | 43.09               |                                 | 99.2                        | 166.1                       |                           | 58.6                          |
| Big Snowy              | 2393.3         | 104.5         | 109.6              | 3.3       | 1.40           | 3.62              | 0.04                          | 0.10                 | 74.68              | 1784.03         | 1.34                              | 43.63               |                                 | 43.7                        | 112.9                       |                           | 58.5                          |
| Kibbey                 | 2497.8         | 47.2          | 112.9              | 1.0       | 2.70           | 3.62              | 0.03                          | 0.04                 | 17.50              | 1801.53         | 1.39                              | 43.11               |                                 | 55.9                        | 74.9                        |                           | 59.8                          |
| Madison                | 2545.1         | 187.8         | 113.8              | 3.3       | 3.05           | 3.45              | 0.14                          | 0.16                 | 61.56              | 1863.09         | 1.37                              | 42.70               |                                 | 53.0                        | 59.9                        |                           | 58.3                          |
| Ratcliffe              | 2732.8         | 75.3          | 117.1              | 1.6       | 3.05           | 3.45              | 0.06                          | 0.07                 | 24.68              | 1887.77         | 1.45                              | 40.96               |                                 | 65.7                        | 74.3                        |                           | 59.3                          |
| Frobisher              | 2808.1         | 183.2         | 118.7              | 4.5       | 2.80           | 3.45              | 0.13                          | 0.16                 | 65.42              | 1953.19         | 1.44                              | 40.44               |                                 | 68.9                        | 84.9                        |                           | 58.1                          |
| Lodgepole              | 2991.3         | 243.8         | 123.2              | 7.3       | 2.30           | 3.45              | 0.14                          | 0.21                 | 106.02             | 2059.21         | 1.45                              | 39.47               |                                 | 69.1                        | 103.6                       |                           | 57.3                          |
| Bakken                 | 3235.1         | 35.1          | 130.6              | 1.5       | 1.00           | 4.00              | 0.01                          | 0.04                 | 35.05              | 2094.26         | 1.54                              | 38.75               |                                 | 43.4                        | 173.7                       |                           | 59.9                          |
| Three Forks            | 3270.2         | 59.4          | 132.1              | 1.6       | 2.70           | 4.00              | 0.04                          | 0.06                 | 22.01              | 2116.28         | 1.55                              | 38.80               |                                 | 74.4                        | 110.3                       |                           | 60.0                          |
| Birdbear               | 3329.6         | 25.3          | 133.7              | 0.6       | 2.80           | 4.00              | 0.02                          | 0.03                 | 9.04               | 2125.31         | 1.57                              | 38.60               |                                 | 63.9                        | 91.4                        |                           | 60.5                          |
| Duperow                | 3354.9         | 125.9         | 134.3              | 3.0       | 2.60           | 4.00              | 0.08                          | 0.13                 | 48.42              | 2173.73         | 1.54                              | 38.49               |                                 | 61.4                        | 94.4                        |                           | 59.4                          |
| Souris River           | 3480.8         | 79.6          | 137.3              | 2.0       | 2.80           | 3.09              | 0.06                          | 0.06                 | 28.41              | 2202.14         | 1.58                              | 37.95               |                                 | 68.6                        | 75.7                        |                           | 60.0                          |
| Dawson Bay             | 3560.4         | 32.0          | 139.2              | 0.8       | 2.75           | 3.09              | 0.02                          | 0.02                 | 11.64              | 2213.78         | 1.61                              | 37.65               |                                 | 65.4                        | 73.5                        |                           | 60.5                          |
| Prairie                | 3592.4         | 86.9          | 140.0              | 1.7       | 4.00           | 2.18              | 0.09                          | 0.05                 | 21.72              | 2235.50         | 1.61                              | 37.52               |                                 | 76.7                        | 41.8                        |                           | 60.3                          |
| Winnipegosis           | 3679.2         | 34.4          | 141.6              | 0.9       | 2.99           | 2.83              | 0.03                          | 0.02                 | 11.52              | 2247.01         | 1.64                              | 37.09               |                                 | 75.7                        | 71.7                        |                           | 60.7                          |
| Ashern                 | 3713.7         | 36.3          | 142.5              | 1.0       | 2.99           | 2.83              | 0.03                          | 0.03                 | 12.13              | 2259.15         | 1.64                              | 36.98               |                                 | 83.8                        | 79.3                        |                           | 60.8                          |
| Interlake              | 3750.0         | 211.2         | 143.5              | 4.6       | 3.77           | 3.72              | 0.20                          | 0.20                 | 56.03              | 2315.17         | 1.62                              | 36.90               |                                 | 81.2                        | 80.1                        |                           | 59.8                          |
| вон                    | 3961.2         |               | 148.1              |           |                |                   |                               |                      |                    |                 |                                   |                     |                                 |                             |                             |                           |                               |
|                        |                |               |                    |           |                | Σ =               | 2.03                          | 2.58                 |                    |                 |                                   |                     |                                 |                             |                             |                           |                               |
| Notes                  |                |               |                    |           |                |                   |                               |                      |                    |                 | Average                           |                     |                                 | 65.3                        | 87.6                        | 61                        | 57.5                          |
| 1 - Thermal conduct    | tivity derived | l from grap   | hical method       | k         |                |                   |                               |                      |                    |                 | Wtd Avera                         | ge                  |                                 | 73.3                        | 93.0                        |                           |                               |
| 2 - Thermal conduct    | tivity used by | y Nordeng a   | and Nesheim        | (2011) aı | nd Norde       | ng (2014)         |                               |                      |                    |                 | Shallow                           |                     |                                 |                             |                             | 58.4                      | 37.8                          |
| 3 - Weighted average   | ge of graphic  | al thermal    | conductivity       |           |                |                   |                               |                      |                    |                 | Deep                              |                     | 60                              |                             |                             | 60.3                      | 59.1                          |
| 4 - Weighted average   | ge of Norden   | ıg's therma   | l conductivit      | Y         |                |                   |                               |                      |                    |                 |                                   |                     |                                 |                             |                             |                           |                               |
| 5 - Harmonic mean      | of thermal c   | onductivity   |                    |           |                |                   |                               |                      |                    |                 |                                   |                     |                                 |                             |                             |                           |                               |
| 6 - Heat flow derive   | d from grap    | hical metho   | d                  |           |                |                   |                               |                      |                    |                 |                                   |                     |                                 |                             |                             |                           |                               |
| 7- Heat flow derive    | d from Equat   | tion 1 for ea | ach formatio       |           |                |                   |                               |                      |                    |                 |                                   |                     |                                 |                             |                             |                           |                               |
| 8 - Heat Flow derive   | ed from Equa   | ation 1 and   | Nordengs $\lambda$ |           |                |                   |                               |                      |                    |                 |                                   |                     |                                 |                             |                             |                           |                               |
| 9 - Heat flow derive   | d from Bulla   | rd's Metho    | d                  |           |                |                   |                               |                      |                    |                 |                                   |                     |                                 |                             |                             |                           |                               |
| 10 - Heat flow deriv   | ed using har   | monic mea     | n method           |           |                |                   |                               |                      |                    |                 |                                   |                     |                                 |                             |                             |                           |                               |
| 11- FU/HC/FH - For     | t Union Grou   | p/Hell Cree   | ed                 |           |                |                   |                               |                      |                    |                 |                                   |                     | 1                               |                             |                             |                           |                               |

## Summary of Heat Flow Calculations NDIC 17014 Edwards 1-33BH Mountrail County, ND

|                        | Depth (Z)      | Δz            | Temp (T)     | Δτ          | $\lambda^1$ | $\lambda_{N}^{2}$ | $\lambda_{wtd}^{3}$           | $\lambda_{\rm Nwtd}^{4}$ | Δz <sub>i</sub> /λ | R <sub>i</sub>  | λ <sub>hi</sub> 5                 | grad <sub>i</sub>   | Q <sub>graph</sub> <sup>6</sup> | Q2 <sup>7</sup> | Q_ <sup>8</sup>    | 9<br>Q <sub>Bullard</sub> | <b>Q</b> <sub>hi</sub> <sup>10</sup> |
|------------------------|----------------|---------------|--------------|-------------|-------------|-------------------|-------------------------------|--------------------------|--------------------|-----------------|-----------------------------------|---------------------|---------------------------------|-----------------|--------------------|---------------------------|--------------------------------------|
| Formation              | (n             | n)            | (°C          | C)          |             | W m               | <sup>-1</sup> K <sup>-1</sup> |                          | W                  | K <sup>-1</sup> | W m <sup>-1</sup> K <sup>-1</sup> | °C km <sup>-1</sup> | 8 p.:.                          |                 | mW m <sup>-2</sup> |                           |                                      |
| Till                   | 0.0            | 7.6           | 6.6          | 0.2         | 1.10        | 1.72              | 0.00                          | 0.01                     | 6.93               | 6.93            |                                   |                     |                                 | 102.5           | 160.3              |                           |                                      |
| FU/HC/FH <sup>11</sup> | 7.6            | 538.6         | 6.8          | 14.2        | 1.40        | 1.72              | 0.31                          | 0.38                     | 384.70             | 391.63          | 0.02                              | 93.18               |                                 | 37.1            | 45.6               |                           | 1.8                                  |
| Pierre                 | 546.2          | 599.2         | 20.9         | 23.8        | 1.05        | 1.62              | 0.26                          | 0.40                     | 570.70             | 962.33          | 0.57                              | 27.44               |                                 | 41.7            | 64.3               | Í                         | 15.6                                 |
| Greenhorn              | 1145.4         | 96.0          | 44.7         | 5.1         | 1.00        | 1.62              | 0.04                          | 0.06                     | 96.01              | 1058.34         | 1.08                              | 33.84               |                                 | 53.1            | 86.1               |                           | 36.6                                 |
| Mowry                  | 1241.5         | 107.0         | 49.8         | 4.9         | 0.90        | 1.80              | 0.04                          | 0.08                     | 118.87             | 1177.21         | 1.05                              | 35.33               |                                 | 41.2            | 82.4               |                           | 37.3                                 |
| Inyan Kara             | 1348.4         | 97.5          | 54.7         | 2.2         | 1.40        | 2.35              | 0.06                          | 0.09                     | 69.67              | 1246.88         | 1.08                              | 36.16               |                                 | 32.0            | 53.7               |                           | 39.1                                 |
| Swift                  | 1446.0         | 127.4         | 56.9         | 3.8         | 1.20        | 2.10              | 0.06                          | 0.11                     | 106.17             | 1353.05         | 1.07                              | 35.26               |                                 | 35.7            | 62.5               |                           | 37.7                                 |
| Rierdon                | 1573.4         | 171.0         | 60.7         | 4.9         | 1.60        | 2.10              | 0.11                          | 0.15                     | 106.87             | 1459.93         | 1.08                              | 34.82               |                                 | 45.5            | 59.7               |                           | 37.5                                 |
| Spearfish              | 1744.4         | 176.5         | 65.6         | 4.0         | 1.40        | 3.04              | 0.10                          | 0.22                     | 126.06             | 1585.98         | 1.10                              | 34.19               |                                 | 32.0            | 69.4               |                           | 37.6                                 |
| Broom Creek            | 1920.8         | 95.7          | 69.6         | 2.3         | 3.00        | 2.68              | 0.12                          | 0.11                     | 31.90              | 1617.88         | 1.19                              | 33.15               |                                 | 71.8            | 64.1               |                           | 39.4                                 |
| Kibbey                 | 2016.6         | 49.1          | 71.9         | 0.8         | 2.40        | 3.62              | 0.05                          | 0.07                     | 20.45              | 1638.33         | 1.23                              | 32.71               |                                 | 38.6            | 58.3               |                           | 40.3                                 |
| Madison                | 2065.6         | 71.9          | 72.7         | 1.1         | 2.90        | 3.45              | 0.09                          | 0.10                     | 24.80              | 1663.14         | 1.24                              | 32.31               |                                 | 44.3            | 52.8               |                           | 40.1                                 |
| Ratcliffe              | 2137.6         | 20.1          | 73.8         | 0.3         | 3.00        | 3.45              | 0.02                          | 0.03                     | 6.71               | 1669.84         | 1.28                              | 31.74               |                                 | 50.7            | 58.3               |                           | 40.6                                 |
| Frobisher              | 2157.7         | 279.7         | 74.1         | 5.3         | 3.05        | 3.45              | 0.35                          | 0.40                     | 91.70              | 1761.54         | 1.22                              | 31.60               |                                 | 58.0            | 65.6               |                           | 38.7                                 |
| Bottom of Well         | 2437.4         |               | 79.4         |             | 3.05        |                   |                               |                          |                    |                 |                                   |                     |                                 |                 |                    |                           |                                      |
|                        |                |               |              |             |             | $\Sigma =$        | 1.61                          | 2.20                     |                    |                 |                                   |                     |                                 |                 |                    |                           |                                      |
| Notes                  |                |               |              |             |             |                   |                               |                          |                    |                 | Average                           |                     |                                 | 48.9            | 70.2               | 41.0                      | 34.0                                 |
| 1 - Thermal conduc     | tivity derived | d from grap   | hical metho  | d           |             |                   |                               |                          |                    |                 | Wtd Avera                         | ge                  |                                 | 48.5            | 66.4               |                           |                                      |
| 2 - Thermal conduc     | tivity used by | y Nordeng a   | and Nesheir  | n (2011) a  | nd Norde    | ng (2014)         |                               |                          |                    |                 | Shallow                           |                     |                                 |                 |                    | 37.1                      | 26.1                                 |
| 3 - Weighted average   | ge of graphic  | al thermal    | conductivity | /           |             |                   |                               |                          |                    |                 | Deep                              |                     | 40.0                            |                 |                    | 41.0                      | 38.6                                 |
| 4 - Weighted average   | ge of Norden   | ng's therma   | l conductivi | ty          |             |                   |                               |                          |                    |                 |                                   |                     |                                 |                 |                    |                           |                                      |
| 5 - Harmonic mean      | of thermal c   | onductivity   | ,            |             |             |                   |                               |                          |                    |                 |                                   |                     |                                 |                 |                    |                           |                                      |
| 6 - Heat flow derive   | ed from grapl  | hical metho   | bd           |             |             |                   |                               |                          |                    |                 |                                   |                     |                                 |                 |                    |                           |                                      |
| 7- Heat flow derive    | d from Equat   | tion 1 for ea | ach formatio | on          |             |                   |                               |                          |                    |                 |                                   |                     |                                 |                 |                    |                           |                                      |
| 8 - Heat Flow derive   | ed from Equa   | ation 1 and   | Nordengs λ   |             |             |                   |                               |                          |                    |                 |                                   |                     |                                 |                 |                    |                           |                                      |
| 9 - Heat flow derive   | ed from Bulla  | rd's Metho    | d            |             |             |                   |                               |                          |                    |                 |                                   |                     |                                 |                 |                    |                           |                                      |
| 10 - Heat flow deriv   | ed using har   | monic mea     | n method     |             |             |                   |                               |                          |                    |                 |                                   |                     |                                 |                 |                    |                           |                                      |
| 11- FU/HC/FH - For     | t Union Grou   | p/Hell Cree   | ek Formatio  | n/Fox Hills | Formatic    | on combin         | ed                            |                          |                    |                 |                                   |                     |                                 | 1               |                    | 1                         |                                      |

## Summary of Heat Flow Calculations NDIC 17043 St. Andes 151-89-2413H-1 Mountrail County, ND

|                        | Depth (Z)      | Δz           | Temp (T)           | Δτ          | $\lambda^1$ | λ,,²      | $\lambda_{\rm wtd}^{3}$       | $\lambda_{Nwtd}^4$ | ΔZ:/λ  | R:              | λ. <sup>5</sup>                   | grad.               | Q <sub>araph</sub> <sup>6</sup> | Q, <sup>7</sup> | Q,, <sup>8</sup>   | Q <sub>Bullard</sub> <sup>9</sup> | <b>Q</b> <sub>bi</sub> <sup>10</sup> |
|------------------------|----------------|--------------|--------------------|-------------|-------------|-----------|-------------------------------|--------------------|--------|-----------------|-----------------------------------|---------------------|---------------------------------|-----------------|--------------------|-----------------------------------|--------------------------------------|
| Formation              | (m             | ו)           | (°C                | )           |             | W m       | <sup>-1</sup> K <sup>-1</sup> | Itwid              | W      | K <sup>-1</sup> | W m <sup>-1</sup> K <sup>-1</sup> | °C km <sup>-1</sup> | graph                           | ~2              | mW m <sup>-2</sup> | Bullaru                           |                                      |
| FU/HC/FH <sup>11</sup> | 15.8           | 593.8        | 6.5                | 15.5        | 1.60        | 1.72      | 0.40                          | 0.43               | 371.09 | 371.09          |                                   |                     |                                 | 41.8            | 44.9               |                                   |                                      |
| Pierre                 | 609.6          | 430.4        | 22.0               | 15.2        | 1.15        | 1.62      | 0.21                          | 0.29               | 374.24 | 745.34          | 0.82                              | 26.11               |                                 | 40.7            | 57.3               |                                   | 21.4                                 |
| Niobrara               | 1040.0         | 156.1        | 37.2               | 6.9         | 1.10        | 1.62      | 0.07                          | 0.11               | 141.87 | 887.21          | 1.17                              | 30.00               |                                 | 48.9            | 72.1               |                                   | 35.2                                 |
| Greenhorn              | 1196.0         | 116.1        | 44.2               | 5.9         | 0.90        | 1.62      | 0.04                          | 0.08               | 129.03 | 1016.24         | 1.18                              | 31.92               |                                 | 45.6            | 82.2               |                                   | 37.6                                 |
| Mowry                  | 1312.2         | 107.3        | 50.1               | 4.9         | 1.00        | 1.80      | 0.04                          | 0.08               | 107.29 | 1123.53         | 1.17                              | 33.60               |                                 | 45.6            | 82.0               |                                   | 39.2                                 |
| Inyan Kara             | 1419.5         | 115.5        | 54.9               | 2.2         | 1.50        | 2.35      | 0.07                          | 0.11               | 77.01  | 1200.54         | 1.18                              | 34.51               |                                 | 28.9            | 45.2               |                                   | 40.8                                 |
| Swift                  | 1535.0         | 125.6        | 57.2               | 3.6         | 1.20        | 2.10      | 0.06                          | 0.11               | 104.65 | 1305.19         | 1.18                              | 33.35               |                                 | 34.0            | 59.5               |                                   | 39.2                                 |
| Rierdon                | 1660.6         | 30.5         | 60.7               | 1.1         | 1.50        | 2.10      | 0.02                          | 0.03               | 20.32  | 1325.51         | 1.25                              | 32.97               |                                 | 54.7            | 76.6               |                                   | 41.3                                 |
| Piper                  | 1691.0         | 122.2        | 61.8               | 3.2         | 2.10        | 2.10      | 0.11                          | 0.11               | 58.20  | 1383.71         | 1.22                              | 33.03               |                                 | 55.4            | 55.4               |                                   | 40.4                                 |
| Spearfish              | 1813.3         | 78.9         | 65.1               | 1.5         | 1.60        | 3.04      | 0.05                          | 0.10               | 49.34  | 1433.05         | 1.27                              | 32.58               |                                 | 30.4            | 57.8               |                                   | 41.2                                 |
| Opeche                 | 1892.2         | 24.7         | 66.6               | 0.5         | 1.60        | 3.04      | 0.02                          | 0.03               | 15.43  | 1448.48         | 1.31                              | 32.01               |                                 | 32.4            | 61.6               |                                   | 41.8                                 |
| Amsden                 | 1916.9         | 103.3        | 67.1               | 1.9         | 2.40        | 3.04      | 0.10                          | 0.13               | 43.05  | 1491.53         | 1.29                              | 31.85               |                                 | 43.9            | 55.6               |                                   | 40.9                                 |
| Tyler                  | 2020.2         | 121.6        | 68.9               | 3.2         | 1.40        | 2.68      | 0.07                          | 0.14               | 86.87  | 1578.40         | 1.28                              | 31.15               |                                 | 37.1            | 71.0               |                                   | 39.9                                 |
| Kibbey Lime            | 2141.8         | 51.2         | 72.2               | 0.8         | 2.70        | 3.62      | 0.06                          | 0.08               | 18.97  | 1597.37         | 1.34                              | 30.89               |                                 | 43.9            | 58.9               |                                   | 41.4                                 |
| Madison                | 2193.0         | 93.0         | 73.0               | 1.7         | 3.05        | 3.45      | 0.12                          | 0.13               | 30.48  | 1627.85         | 1.35                              | 30.54               |                                 | 56.5            | 63.9               |                                   | 41.1                                 |
| Ratcliffe              | 2317.4         | 116.1        | 74.7               | 1.0         | 3.05        | 3.45      | 0.15                          | 0.17               | 38.08  | 1665.92         | 1.37                              | 30.05               |                                 | 26.3            | 29.7               |                                   | 41.2                                 |
| Bottom of Well         | 2402.1         |              | 75.7               |             |             |           |                               |                    |        |                 |                                   |                     |                                 |                 |                    |                                   |                                      |
|                        |                |              |                    |             |             | Σ =       | 1.59                          | 2.11               |        |                 |                                   |                     |                                 |                 |                    |                                   |                                      |
| Notes                  |                |              |                    |             |             |           |                               |                    |        |                 | Average                           |                     |                                 | 41.6            | 60.8               | 41.5                              | 40.1                                 |
| 1 - Thermal conduc     | tivity derived | l from grap  | hical metho        | d           |             |           |                               |                    |        |                 | Wtd Averag                        | ge                  |                                 | 52.3            | 69.5               |                                   |                                      |
| 2 - Thermal conduc     | tivity used by | / Nordeng a  | and Nesheim        | า (2011) a  | nd Norde    | ng (2014) |                               |                    |        |                 | Shallow                           |                     |                                 |                 |                    | 40.7                              | 28.3                                 |
| 3 - Weighted avera     | ge of graphic  | al thermal   | conductivity       | ,           |             |           |                               |                    |        |                 | Deep                              |                     | 42                              |                 |                    | 40.1                              | 40.5                                 |
| 4 - Weighted avera     | ge of Norden   | g's therma   | l conductivit      | y           |             |           |                               |                    |        |                 |                                   |                     |                                 |                 |                    |                                   |                                      |
| 5 - Harmonic mean      | of thermal co  | onductivity  |                    |             |             |           |                               |                    |        |                 |                                   |                     |                                 |                 |                    |                                   |                                      |
| 6 - Heat flow derive   | ed from graph  | nical metho  | d                  |             |             |           |                               |                    |        |                 |                                   |                     |                                 |                 |                    |                                   |                                      |
| 7- Heat flow derive    | d from Equat   | ion 1 for ea | ach formatio       | n           |             |           |                               |                    |        |                 |                                   |                     |                                 |                 |                    |                                   |                                      |
| 8 - Heat Flow deriv    | ed from Equa   | ition 1 and  | Nordengs $\lambda$ |             |             |           |                               |                    |        |                 |                                   |                     |                                 |                 |                    |                                   |                                      |
| 9 - Heat flow derive   | ed from Bulla  | rd's Metho   | d                  |             |             |           |                               |                    |        |                 |                                   |                     |                                 |                 |                    |                                   |                                      |
| 10 - Heat flow deriv   | ed using har   | monic mea    | n method           |             |             |           |                               |                    |        |                 |                                   |                     |                                 |                 |                    |                                   |                                      |
| 11- FU/HC/FH - For     | t Union Grou   | p/Hell Cree  | ek Formatior       | h/Fox Hills | Formatio    | on combin | ed                            |                    |        |                 | 1                                 |                     |                                 |                 |                    |                                   |                                      |

## Summary of Heat Flow Calculations NDIC 17230 Roosevelt Federal 2-4H Billings County, ND

|                        | Depth (Z)     | Δz            | Temp (T)           | Δτ          | $\lambda^1$ | $\lambda_{N}^{2}$ | $\lambda_{\mathrm{wtd}}^{3}$  | $\lambda_{\rm Nwtd}^{4}$ | ΔZ <sub>i</sub> /λ | R <sub>i</sub>  | λ <sub>hi</sub> 5                 | grad <sub>i</sub>   | Q <sub>graph</sub> <sup>6</sup> | Q <sub>2</sub> <sup>7</sup> | <b>Q</b> <sub>N</sub> <sup>8</sup> | 9<br>Q <sub>Bullard</sub> | <b>Q</b> _hi <sup>10</sup> |
|------------------------|---------------|---------------|--------------------|-------------|-------------|-------------------|-------------------------------|--------------------------|--------------------|-----------------|-----------------------------------|---------------------|---------------------------------|-----------------------------|------------------------------------|---------------------------|----------------------------|
| Formation              | (r            | n)            | (°C                | :)          |             | Wm                | <sup>-1</sup> K <sup>-1</sup> | •                        | w                  | K <sup>-1</sup> | W m <sup>-1</sup> K <sup>-1</sup> | °C km <sup>-1</sup> |                                 |                             | mW m <sup>-2</sup>                 |                           |                            |
| FU/HC/FH <sup>11</sup> | 6.7           | 413.3         | 9.4                | 14.2        | 1.30        | 1.72              | 0.18                          | 0.28                     | 317.93             | 317.93          |                                   |                     |                                 | 44.8                        | 59.2                               |                           |                            |
| Pierre                 | 420.0         | 896.4         | 23.6               | 42.4        | 1.15        | 1.62              | 0.34                          | 0.48                     | 779.49             | 1097.42         | 0.38                              | 34.43               |                                 | 54.4                        | 76.7                               |                           | 13.2                       |
| Greenhorn              | 1316.4        | 140.5         | 66.0               | 8.0         | 1.00        | 1.62              | 0.05                          | 0.07                     | 140.51             | 1237.94         | 1.06                              | 43.27               |                                 | 56.8                        | 92.0                               |                           | 46.0                       |
| Mowry                  | 1456.9        | 62.8          | 74.0               | 2.5         | 1.10        | 1.80              | 0.02                          | 0.04                     | 57.08              | 1295.02         | 1.13                              | 44.58               |                                 | 44.3                        | 72.5                               |                           | 50.2                       |
| Newcastle              | 1519.7        | 87.2          | 76.5               | 4.2         | 1.50        | 1.80              | 0.04                          | 0.05                     | 58.12              | 1353.13         | 1.12                              | 44.40               |                                 | 72.8                        | 87.3                               |                           | 49.9                       |
| Inyan Kara             | 1606.9        | 128.9         | 80.8               | 3.4         | 1.60        | 2.35              | 0.07                          | 0.10                     | 80.58              | 1433.71         | 1.12                              | 44.63               |                                 | 42.1                        | 61.8                               |                           | 50.0                       |
| Swift                  | 1735.8        | 154.2         | 84.2               | 6.3         | 1.30        | 2.10              | 0.07                          | 0.11                     | 118.64             | 1552.35         | 1.12                              | 43.26               |                                 | 53.0                        | 85.6                               |                           | 48.4                       |
| Rierdon                | 1890.1        | 97.8          | 90.4               | 3.5         | 1.80        | 2.10              | 0.06                          | 0.07                     | 54.36              | 1606.71         | 1.18                              | 43.06               |                                 | 64.0                        | 74.7                               |                           | 50.6                       |
| Spearfish              | 1987.9        | 154.5         | 93.9               | 3.0         | 2.60        | 3.04              | 0.13                          | 0.15                     | 59.44              | 1666.14         | 1.19                              | 42.69               |                                 | 50.8                        | 59.4                               |                           | 50.9                       |
| Minnekahta/Opeche      | 2142.4        | 100.0         | 96.9               | 1.7         | 3.20        | 3.04              | 0.11                          | 0.10                     | 31.24              | 1697.38         | 1.26                              | 41.01               |                                 | 54.1                        | 51.4                               |                           | 51.8                       |
| Broom Creek            | 2242.4        | 88.1          | 98.6               | 1.4         | 2.60        | 3.04              | 0.08                          | 0.09                     | 33.88              | 1731.26         | 1.30                              | 39.93               |                                 | 41.0                        | 48.0                               |                           | 51.7                       |
| Tyler                  | 2330.5        | 73.5          | 100.0              | 2.5         | 1.50        | 2.68              | 0.04                          | 0.06                     | 48.97              | 1780.24         | 1.31                              | 39.02               |                                 | 50.6                        | 90.5                               |                           | 51.1                       |
| Otter                  | 2404.0        | 38.1          | 102.5              | 1.5         | 1.50        | 3.62              | 0.02                          | 0.05                     | 25.40              | 1805.64         | 1.33                              | 38.86               |                                 | 57.9                        | 139.7                              |                           | 51.7                       |
| Kibbey Sandstone       | 2442.1        | 65.5          | 104.0              | 1.6         | 3.10        | 3.62              | 0.07                          | 0.08                     | 21.14              | 1826.77         | 1.34                              | 38.85               |                                 | 74.7                        | 87.3                               |                           | 51.9                       |
| Kibbey Lime            | 2507.6        | 46.3          | 105.6              | 0.9         | 3.00        | 3.62              | 0.05                          | 0.06                     | 15.44              | 1842.22         | 1.36                              | 38.47               |                                 | 56.3                        | 68.0                               |                           | 52.4                       |
| Madison                | 2553.9        | 135.9         | 106.4              | 2.1         | 3.05        | 3.45              | 0.14                          | 0.15                     | 44.57              | 1886.79         | 1.35                              | 38.11               |                                 | 47.1                        | 53.3                               |                           | 51.6                       |
| Ratcliffe              | 2689.9        | 75.0          | 108.5              | 1.5         | 3.05        | 3.45              | 0.08                          | 0.08                     | 24.58              | 1911.37         | 1.41                              | 36.96               |                                 | 60.6                        | 68.6                               |                           | 52.0                       |
| Frobisher              | 2764.8        | 32.3          | 110.0              | 0.7         | 3.05        | 3.45              | 0.03                          | 0.04                     | 10.59              | 1921.97         | 1.44                              | 36.50               |                                 | 65.1                        | 73.7                               |                           | 52.5                       |
| Fryburg                | 2797.1        | 109.7         | 110.7              | 2.4         | 3.05        | 3.45              | 0.11                          | 0.12                     | 35.98              | 1957.94         | 1.43                              | 36.32               |                                 | 65.9                        | 74.5                               |                           | 51.9                       |
| Lodgepole              | 2906.9        | 139.8         | 113.1              | 3.6         | 3.05        | 3.45              | 0.14                          | 0.16                     | 45.83              | 2003.77         | 1.45                              | 35.76               |                                 | 79.4                        | 89.8                               |                           | 51.9                       |
| Bottom of Well         | 3046.7        |               | 116.7              |             |             |                   |                               |                          |                    |                 |                                   |                     |                                 |                             |                                    |                           |                            |
|                        |               |               |                    |             |             | Σ =               | 1.79                          | 2.33                     |                    |                 |                                   |                     |                                 |                             |                                    |                           | <u> </u>                   |
| Notes                  |               |               |                    |             |             |                   |                               |                          |                    |                 | Average                           |                     |                                 | 56.8                        | 75.7                               | 53.5                      | 48.9                       |
| 1 - Thermal conduct    | ivity derive  | d from grap   | hical metho        | d           |             |                   |                               |                          |                    |                 | Wtd Averag                        | ge                  |                                 | 63.1                        | 82.3                               |                           | <u> </u>                   |
| 2 - Thermal conduct    | ivity used b  | y Nordeng     | and Neshein        | n (2011) a  | nd Norde    | ng (2014)         |                               |                          |                    |                 | Shallow                           |                     |                                 |                             |                                    | 54.3                      | 29.6                       |
| 3 - Weighted averag    | e of graphic  | cal thermal   | conductivity       | 1           |             |                   |                               |                          |                    |                 | Deep                              |                     | 55.0                            |                             |                                    | 52.7                      | 51.2                       |
| 4 - Weighted averag    | e of Norder   | ng's therma   | l conductivit      | :y          |             |                   |                               |                          |                    |                 |                                   |                     |                                 |                             |                                    |                           |                            |
| 5 - Harmonic mean      | of thermal of | conductivity  | ,                  |             |             |                   |                               |                          |                    |                 |                                   |                     |                                 |                             |                                    |                           |                            |
| 6 - Heat flow derive   | d from grap   | hical metho   | bd                 |             |             |                   |                               |                          |                    |                 |                                   |                     |                                 |                             |                                    |                           | 1                          |
| 7- Heat flow derived   | l from Equa   | tion 1 for ea | ach formatio       | on          |             |                   |                               |                          |                    |                 |                                   |                     |                                 |                             |                                    |                           |                            |
| 8 - Heat Flow derive   | d from Equ    | ation 1 and   | Nordengs $\lambda$ |             |             |                   |                               |                          |                    |                 |                                   |                     |                                 |                             |                                    |                           |                            |
| 9 - Heat flow derive   | d from Bulla  | ard's Metho   | d                  |             |             |                   |                               |                          |                    |                 |                                   |                     |                                 |                             |                                    |                           |                            |
| 10 - Heat flow deriv   | ed using ha   | rmonic mea    | n method           |             |             |                   |                               |                          |                    |                 |                                   |                     |                                 |                             |                                    |                           |                            |
| 11- FU/HC/FH - Fort    | Union Grou    | up/Hell Cree  | ek Formatio        | n/Fox Hills | Formatic    | n combin          | ed                            |                          |                    |                 |                                   |                     |                                 |                             |                                    |                           |                            |

## Summary of Heat Flow Calculations NDIC 17317 E-M Emmel 10-3 Renville County, ND

|                        | Depth (Z)                                                                                                                                               | Δz          | Temp (T)     | Δт         | $\lambda^1$ | $\lambda_{N}^{2}$ | $\lambda_{wtd}^{~~3}$         | $\lambda_{Nwtd}^{4}$ | Δz <sub>i</sub> /λ | R <sub>i</sub>  | λ <sub>hi</sub> 5                 | grad <sub>i</sub>   | Q <sub>graph</sub> <sup>6</sup> | Q <sub>2</sub> <sup>7</sup> | Q <sub>N</sub> <sup>8</sup> | 9<br>Q <sub>Bullard</sub> | <b>Q</b> _{hi}^{10} |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|------------|-------------|-------------------|-------------------------------|----------------------|--------------------|-----------------|-----------------------------------|---------------------|---------------------------------|-----------------------------|-----------------------------|---------------------------|---------------------|
| Formation              | (r                                                                                                                                                      | n)          | (°C          | C)         |             | W m               | <sup>-1</sup> K <sup>-1</sup> |                      | w                  | К <sup>-1</sup> | W m <sup>-1</sup> K <sup>-1</sup> | °C km <sup>-1</sup> |                                 | •                           | mW m <sup>-2</sup>          |                           |                     |
| Glacial                | 0                                                                                                                                                       | 76.2        | 5.88         | 2.32       | 1.2         | 1.72              | 0.03                          | 0.07                 | 50.8               | 50.8            |                                   |                     |                                 | 36.5                        | 52.4                        |                           |                     |
| FU/HC/FH <sup>11</sup> | 76.2                                                                                                                                                    | 133.2       | 8.2          | 5.5        | 1.20        | 1.72              | 0.06                          | 0.09                 | 102.46             | 153.26          | 0.50                              | 30.45               |                                 | 49.6                        | 71.2                        |                           | 15.1                |
| Pierre                 | 209.4                                                                                                                                                   | 556.0       | 13.7         | 28.0       | 1.10        | 1.62              | 0.23                          | 0.34                 | 483.44             | 636.70          | 0.33                              | 37.39               |                                 | 55.4                        | 81.6                        |                           | 12.3                |
| Greenhorn              | 765.4                                                                                                                                                   | 84.7        | 41.7         | 5.2        | 1.10        | 1.62              | 0.03                          | 0.05                 | 84.73              | 721.43          | 1.06                              | 46.84               |                                 | 67.4                        | 99.2                        |                           | 49.7                |
| Mowry                  | 850.1                                                                                                                                                   | 93.3        | 46.9         | 5.1        | 1.20        | 1.80              | 0.04                          | 0.06                 | 93.27              | 814.70          | 1.04                              | 48.28               |                                 | 65.6                        | 98.4                        |                           | 50.4                |
| Inyan Kara             | 943.4                                                                                                                                                   | 129.5       | 52.0         | 3.2        | 1.60        | 2.35              | 0.08                          | 0.11                 | 76.20              | 890.90          | 1.06                              | 48.91               |                                 | 39.6                        | 58.2                        |                           | 51.8                |
| Swift                  | 1072.9                                                                                                                                                  | 57.0        | 55.2         | 2.4        | 1.20        | 2.10              | 0.03                          | 0.04                 | 43.84              | 934.75          | 1.15                              | 46.00               |                                 | 50.9                        | 89.2                        |                           | 52.8                |
| Rierdon                | 1129.9                                                                                                                                                  | 163.1       | 57.7         | 5.6        | 1.60        | 2.10              | 0.10                          | 0.13                 | 95.92              | 1030.67         | 1.10                              | 45.82               |                                 | 55.0                        | 72.2                        |                           | 50.2                |
| Spearfish              | 1293.0                                                                                                                                                  | 66.8        | 63.3         | 1.5        | 1.60        | 3.04              | 0.04                          | 0.08                 | 33.38              | 1064.04         | 1.22                              | 44.38               |                                 | 36.0                        | 68.3                        |                           | 53.9                |
| Madison                | 1359.7                                                                                                                                                  | 225.6       | 64.8         | 5.6        | 3.05        | 3.45              | 0.26                          | 0.29                 | 86.75              | 1150.80         | 1.18                              | 43.30               |                                 | 75.5                        | 85.4                        |                           | 51.2                |
| Lodgepole              | 1585.3                                                                                                                                                  | 171.0       | 70.3         | 4.4        | 3.05        | 3.45              | 0.19                          | 0.22                 | 71.25              | 1222.04         | 1.30                              | 40.66               |                                 | 79.2                        | 89.6                        |                           | 52.7                |
| Bakken                 | 1756.3                                                                                                                                                  | 9.1         | 74.8         | 0.3        | 1.10        | 4.00              | 0.00                          | 0.01                 | 10.16              | 1232.20         | 1.43                              | 39.23               |                                 | 40.9                        | 148.7                       |                           | 55.9                |
| Three Forks            | 1765.4                                                                                                                                                  | 57.3        | 75.1         | 1.6        | 3.10        | 4.00              | 0.07                          | 0.09                 | 22.04              | 1254.24         | 1.41                              | 39.22               |                                 | 84.9                        | 109.6                       |                           | 55.2                |
| Birdbear               | 1822.7                                                                                                                                                  | 31.1        | 76.7         | 0.7        | 3.13        | 4.00              | 0.04                          | 0.05                 | 11.96              | 1266.20         | 1.44                              | 38.85               |                                 | 73.5                        | 93.9                        |                           | 55.9                |
| Duperow                | 1853.8                                                                                                                                                  | 137.8       | 77.4         | 3.2        | 3.19        | 4.00              | 0.16                          | 0.21                 | 49.20              | 1315.40         | 1.41                              | 38.59               |                                 | 74.8                        | 93.8                        |                           | 54.4                |
| Souris River           | 1991.6                                                                                                                                                  | 98.5        | 80.7         | 2.1        | 2.92        | 3.09              | 0.11                          | 0.11                 | 39.38              | 1354.78         | 1.47                              | 37.54               |                                 | 61.7                        | 65.3                        |                           | 55.2                |
| Dawson Bay             | 2090.0                                                                                                                                                  | 55.8        | 82.7         | 1.1        | 2.75        | 3.09              | 0.06                          | 0.06                 | 23.24              | 1378.02         | 1.52                              | 36.77               |                                 | 51.8                        | 58.2                        |                           | 55.8                |
| Prairie Evaporite      | 2145.8                                                                                                                                                  | 134.1       | 83.8         | 1.8        | 4.00        | 2.18              | 0.20                          | 0.11                 | 39.44              | 1417.47         | 1.51                              | 36.30               |                                 | 55.2                        | 30.1                        |                           | 55.0                |
| Winnepegosis           | 2279.9                                                                                                                                                  | 45.1        | 85.6         | 0.9        | 2.99        | 2.83              | 0.05                          | 0.05                 | 17.35              | 1434.82         | 1.59                              | 34.98               |                                 | 62.3                        | 59.0                        |                           | 55.6                |
| Interlake              | 2325.0                                                                                                                                                  | 222.2       | 86.6         | 3.6        | 3.77        | 3.72              | 0.31                          | 0.31                 | 65.35              | 1500.17         | 1.55                              | 34.71               |                                 | 61.8                        | 60.9                        |                           | 53.8                |
| Gunton                 | 2547.2                                                                                                                                                  | 31.7        | 90.2         | 0.8        | 3.79        | 3.72              | 0.04                          | 0.04                 | 9.06               | 1509.23         | 1.69                              | 33.11               |                                 | 98.0                        | 96.2                        |                           | 55.9                |
| Red River              | 2578.9                                                                                                                                                  | 102.2       | 91.0         | 2.0        | 3.28        | 2.55              | 0.13                          | 0.10                 | 31.16              | 1540.39         | 1.67                              | 33.02               |                                 | 63.9                        | 49.7                        |                           | 55.3                |
| Bottom of Well         | 2681.1                                                                                                                                                  |             | 93.0         |            |             |                   |                               |                      |                    |                 |                                   |                     |                                 |                             |                             |                           |                     |
|                        |                                                                                                                                                         |             |              |            |             | Σ =               | 2.26                          | 2.61                 |                    |                 |                                   |                     |                                 |                             |                             |                           |                     |
| Notes                  |                                                                                                                                                         |             |              |            |             |                   |                               |                      |                    |                 | Average                           |                     |                                 | 60.9                        | 78.7                        | 56.7                      | 49.9                |
| 1 - Thermal conduct    | ivity derive                                                                                                                                            | d from grap | hical metho  | d          |             |                   |                               |                      |                    |                 | Wtd Averag                        | ge                  |                                 | 73.4                        | 84.8                        |                           |                     |
| 2 - Thermal conduct    | ivity used b                                                                                                                                            | y Nordeng a | and Nesheir  | n (2011) a | nd Norde    | ng (2014)         |                               |                      |                    |                 | Shallow                           |                     |                                 |                             |                             | 56.1                      | 13.7                |
| 3 - Weighted average   | ge of graphic                                                                                                                                           | al thermal  | conductivity | /          |             |                   |                               |                      |                    |                 | Deep                              |                     | 59.0                            |                             |                             | 56.8                      | 53.7                |
| 4 - Weighted average   | ge of Norder                                                                                                                                            | ng's therma | l conductivi | ty         |             |                   |                               |                      |                    |                 |                                   |                     |                                 |                             |                             |                           |                     |
| 5 - Harmonic mean      | of thermal o                                                                                                                                            | onductivity | ,            |            |             |                   |                               |                      |                    |                 |                                   |                     |                                 |                             |                             |                           |                     |
| 6 - Heat flow derive   |                                                                                                                                                         |             |              |            |             |                   |                               |                      |                    |                 |                                   |                     |                                 |                             |                             |                           |                     |
| 7- Heat flow derived   |                                                                                                                                                         |             |              |            |             |                   |                               |                      |                    |                 |                                   |                     |                                 |                             |                             |                           |                     |
| 8 - Heat Flow derive   | ed from Equa                                                                                                                                            | ation 1 and | Nordengs λ   |            |             |                   |                               |                      |                    |                 |                                   |                     |                                 |                             |                             |                           |                     |
| 9 - Heat flow derive   | d from Bulla                                                                                                                                            | rd's Metho  | d            |            |             |                   |                               |                      |                    |                 |                                   |                     |                                 |                             |                             |                           |                     |
| 10 - Heat flow deriv   | ed using hai                                                                                                                                            | rmonic mea  | n method     |            |             |                   |                               |                      |                    |                 |                                   |                     |                                 |                             |                             |                           |                     |
| 11- FU/HC/FH - Fort    | <ul> <li>Heat flow derived using harmonic mean method</li> <li>FU/HC/FH - Fort Union Group/Hell Creek Formation/Fox Hills Formation combined</li> </ul> |             |              |            |             |                   |                               |                      |                    |                 |                                   |                     |                                 |                             |                             | ·                         |                     |

## Summary of Heat Flow Calculations NDIC 3090 Grenora-Madison Unit 08 Williams County, ND

|                        | Depth (Z)                                               | Δz           | Temp (T)      | Δт          | λ <sup>1</sup> | λ <sub>N</sub> ² | $\lambda_{wtd}^{3}$             | $\lambda_{Nwtd}^{4}$ | $\Delta Z_i / \lambda$ | R <sub>i</sub>  | λ <sub>hi</sub> <sup>5</sup>      | grad <sub>i</sub>   | Q <sub>graph</sub> <sup>6</sup> | Q <sub>2</sub> <sup>7</sup> | <b>Q</b> <sub>N</sub> <sup>8</sup> | Q <sub>Bullard</sub> 9 | <b>Q</b> <sub>hi</sub> <sup>10</sup> |
|------------------------|---------------------------------------------------------|--------------|---------------|-------------|----------------|------------------|---------------------------------|----------------------|------------------------|-----------------|-----------------------------------|---------------------|---------------------------------|-----------------------------|------------------------------------|------------------------|--------------------------------------|
| Formation              | (r                                                      | n)           | (°C           | )           |                | Wm               | n <sup>-1</sup> K <sup>-1</sup> |                      | w                      | K <sup>-1</sup> | W m <sup>-1</sup> K <sup>-1</sup> | °C km <sup>-1</sup> |                                 |                             | mW m <sup>-2</sup>                 |                        |                                      |
| FU/HC/FH <sup>11</sup> | 20.4                                                    | 401.4        | 10.1          | 9.6         | 1.30           | 1.62             | 0.44                            | 0.55                 | 18.6                   | 18.6            | 0.06                              | 286.72              |                                 | 26.3                        | 41.2                               |                        | 17.9                                 |
| Pierre                 | 421.8                                                   | 776.9        | 19.7          | 31.7        | 1.15           | 1.62             | 0.04                            | 0.06                 | 308.8                  | 327.4           | 0.42                              | 36.66               |                                 | 53.1                        | 66.2                               |                        | 15.4                                 |
| Greenhorn              | 1198.8                                                  | 84.4         | 51.4          | 5.0         | 1.00           | 1.80             | 0.02                            | 0.04                 | 675.6                  | 1002.9          | 1.10                              | 39.37               |                                 | 67.7                        | 95.4                               |                        | 43.4                                 |
| Mowry                  | 1283.2                                                  | 54.9         | 56.4          | 2.5         | 1.00           | 1.80             | 0.03                            | 0.05                 | 84.4                   | 1087.4          | 1.12                              | 40.65               |                                 | 45.2                        | 81.4                               |                        | 45.7                                 |
| Newcastle              | 1338.1                                                  | 65.8         | 58.9          | 2.8         | 1.10           | 2.35             | 0.06                            | 0.13                 | 54.9                   | 1142.2          | 1.11                              | 40.84               |                                 | 42.5                        | 76.6                               |                        | 45.5                                 |
| Inyan Kara             | 1403.9                                                  | 130.1        | 61.7          | 3.7         | 1.30           | 2.10             | 0.10                            | 0.16                 | 59.9                   | 1202.1          | 1.08                              | 40.92               |                                 | 31.3                        | 66.8                               |                        | 44.1                                 |
| Swift                  | 1534.1                                                  | 170.7        | 65.4          | 7.1         | 1.10           | 2.10             | 0.09                            | 0.17                 | 100.1                  | 1302.2          | 1.05                              | 39.86               |                                 | 53.9                        | 87.1                               |                        | 42.0                                 |
| Rierdon                | 1704.7                                                  | 183.2        | 72.5          | 7.1         | 1.30           | 3.04             | 0.03                            | 0.07                 | 155.2                  | 1457.4          | 1.07                              | 40.02               |                                 | 42.6                        | 81.4                               |                        | 42.7                                 |
| Spearfish              | 1887.9                                                  | 52.1         | 79.6          | 1.2         | 1.50           | 3.04             | 0.03                            | 0.06                 | 140.9                  | 1598.3          | 1.16                              | 39.90               |                                 | 29.7                        | 69.4                               |                        | 46.1                                 |
| Broom Creek            | 1940.1                                                  | 43.9         | 80.8          | 1.4         | 2.00           | 2.68             | 0.13                            | 0.17                 | 34.7                   | 1633.0          | 1.17                              | 39.44               |                                 | 46.8                        | 94.9                               |                        | 46.2                                 |
| Tyler                  | 1983.9                                                  | 144.2        | 82.1          | 4.2         | 1.20           | 3.62             | 0.02                            | 0.06                 | 21.9                   | 1655.0          | 1.12                              | 39.26               |                                 | 58.7                        | 78.6                               |                        | 43.9                                 |
| Kibbey Lime            | 2128.1                                                  | 40.5         | 86.4          | 0.7         | 2.70           | 3.45             | 0.14                            | 0.18                 | 120.1                  | 1775.1          | 1.19                              | 38.59               |                                 | 21.9                        | 66.1                               |                        | 45.9                                 |
| Madison                | 2168.7                                                  | 116.0        | 87.1          | 1.8         | 3.05           | 3.45             | 1.32                            | 2.00                 | 15.0                   | 1790.1          | 1.19                              | 38.21               |                                 | 41.0                        | 52.3                               |                        | 45.3                                 |
| вон                    | 2284.7                                                  |              | 88.9          |             |                |                  |                                 |                      |                        |                 |                                   |                     |                                 |                             |                                    |                        |                                      |
|                        |                                                         |              |               |             |                |                  |                                 |                      |                        |                 |                                   |                     |                                 |                             |                                    |                        |                                      |
|                        |                                                         |              |               |             |                | Σ =              | 2.45                            | 3.70                 |                        |                 |                                   |                     |                                 |                             |                                    | ľ                      |                                      |
| Notes                  |                                                         |              |               |             |                |                  |                                 |                      |                        |                 | Average                           |                     |                                 | 43.1                        | 73.6                               | 45.5                   | 43.1                                 |
| 1 - Thermal conduc     | tivity derive                                           | d from grap  | hical metho   | d           |                |                  |                                 |                      |                        |                 | Wtd Averag                        | ge                  |                                 | 45.6                        | 74.2                               |                        |                                      |
| 2 - Thermal conduc     | tivity used b                                           | y Nordeng    | and Neshein   | n (2011) a  | nd Norde       | ng (2014)        |                                 |                      |                        |                 | Shallow                           |                     |                                 |                             |                                    | 44.6                   | 25.6                                 |
| 3 - Weighted avera     | ge of graphic                                           | cal thermal  | conductivity  |             |                |                  |                                 |                      |                        |                 | Deep                              |                     | 45.5                            |                             |                                    | 44                     | 47.9                                 |
| 4 - Weighted avera     | ge of Norder                                            | ng's therma  | l conductivit | y           |                |                  |                                 |                      |                        |                 |                                   |                     |                                 |                             |                                    | 1                      |                                      |
| 5 - Harmonic mean      | of thermal of                                           | conductivity | 1             |             |                |                  |                                 |                      |                        |                 |                                   |                     |                                 |                             |                                    |                        |                                      |
| 6 - Heat flow derive   | ed from grap                                            | hical metho  | bd            |             |                |                  |                                 |                      |                        |                 |                                   |                     |                                 |                             |                                    |                        |                                      |
| 7- Heat flow derive    | 7- Heat flow derived from Equation 1 for each formation |              |               |             |                |                  |                                 |                      |                        |                 |                                   |                     |                                 |                             |                                    |                        |                                      |
| 8 - Heat Flow derive   | ed from Equa                                            | ation 1 and  |               |             |                |                  |                                 |                      |                        |                 |                                   |                     |                                 |                             |                                    |                        |                                      |
| 9 - Heat flow derive   | ed from Bulla                                           | ard's Metho  | d             |             |                |                  |                                 |                      |                        |                 |                                   |                     |                                 |                             |                                    |                        |                                      |
| 10 - Heat flow deriv   | ed using hai                                            | rmonic mea   | in method     |             |                |                  |                                 |                      |                        |                 |                                   |                     |                                 |                             |                                    |                        |                                      |
| 11- FU/HC/FH - For     | t Union Groι                                            | up/Hell Cree | ek Formatior  | h/Fox Hills | Formatio       | on combin        | ed                              |                      |                        |                 |                                   |                     |                                 |                             |                                    |                        |                                      |

## Summary of Heat Flow Calculations NDIC 13725 JC Woods 26H-1 Burke County, ND

|                        | Depth (Z)      | Δz            | Temp (T)           | ΔΤ          | λ <sup>1</sup> | $\lambda_{N}^{2}$ | $\lambda_{wtd}^{3}$           | $\lambda_{Nwtd}^{4}$ | $\Delta Z_i / \lambda$ | R <sub>i</sub>  | λ <sub>hi</sub> <sup>5</sup>      | grad <sub>i</sub> | Q <sub>graph</sub> <sup>6</sup> | Q <sub>2</sub> <sup>7</sup> | <b>Q</b> <sub>N</sub> <sup>8</sup> | Q <sub>Bullard</sub> 9 | <b>Q</b> <sub>hi</sub> <sup>10</sup> |
|------------------------|----------------|---------------|--------------------|-------------|----------------|-------------------|-------------------------------|----------------------|------------------------|-----------------|-----------------------------------|-------------------|---------------------------------|-----------------------------|------------------------------------|------------------------|--------------------------------------|
| Formation              | (n             | n)            | (°C                | )           |                | W m               | <sup>-1</sup> K <sup>-1</sup> |                      | w                      | K <sup>-1</sup> | W m <sup>-1</sup> K <sup>-1</sup> | °C km⁻¹           |                                 |                             | mW m <sup>-2</sup>                 |                        |                                      |
| FU/HC/FH <sup>11</sup> | 12.8           | 342.6         | 7.6                | 11.5        | 1.25           | 1.72              | 0.26                          | 0.35                 | 274.1                  | 284.7           | 0.04                              | 259.34            |                                 | 41.9                        | 57.6                               |                        | 11.7                                 |
| Pierre                 | 355.4          | 653.5         | 19.1               | 31.0        | 1.10           | 1.62              | 0.43                          | 0.64                 | 594.1                  | 878.8           | 0.40                              | 41.64             |                                 | 52.1                        | 76.8                               |                        | 16.8                                 |
| Greenhorn              | 1008.9         | 83.8          | 50.1               | 5.3         | 1.00           | 1.62              | 0.05                          | 0.08                 | 83.8                   | 962.6           | 1.05                              | 45.38             |                                 | 62.8                        | 101.7                              |                        | 47.6                                 |
| Mowry                  | 1092.7         | 97.8          | 55.4               | 4.6         | 1.20           | 1.80              | 0.07                          | 0.11                 | 81.5                   | 1044.2          | 1.05                              | 46.71             |                                 | 56.1                        | 84.1                               |                        | 48.9                                 |
| Inyan Kara             | 1190.5         | 107.9         | 59.9               | 3.1         | 1.60           | 2.35              | 0.10                          | 0.15                 | 67.4                   | 1111.6          | 1.07                              | 46.71             |                                 | 45.2                        | 66.4                               |                        | 50.0                                 |
| Swift                  | 1298.4         | 289.3         | 63.0               | 11.0        | 1.50           | 2.10              | 0.26                          | 0.37                 | 192.8                  | 1304.5          | 1.00                              | 45.18             |                                 | 57.2                        | 80.1                               |                        | 45.0                                 |
| Spearfish              | 1587.7         | 72.7          | 74.0               | 1.6         | 1.80           | 3.04              | 0.08                          | 0.13                 | 40.4                   | 1344.8          | 1.18                              | 43.89             |                                 | 40.4                        | 68.2                               |                        | 51.8                                 |
| вон                    | 1660.4         |               | 75.6               |             |                |                   |                               |                      |                        |                 |                                   |                   |                                 |                             |                                    |                        | <u> </u>                             |
|                        |                |               |                    |             |                |                   |                               |                      |                        |                 |                                   |                   |                                 |                             |                                    |                        | l                                    |
|                        |                |               |                    |             |                | $\Sigma =$        | 1.26                          | 1.83                 |                        |                 |                                   |                   |                                 |                             |                                    |                        | l                                    |
| Notes                  |                |               |                    |             |                |                   |                               |                      |                        |                 | Average                           |                   |                                 | 50.8                        | 76.4                               | 52.2                   | 38.8                                 |
| 1 - Thermal conduct    | tivity derived | d from grap   | hical methor       | d           |                |                   |                               |                      |                        |                 | Wtd Averag                        | ge                |                                 | 53.8                        | 78.7                               |                        | l                                    |
| 2 - Thermal conduct    | tivity used b  | y Nordeng a   | and Nesheim        | n (2011) a  | nd Nordei      | ng (2014)         |                               |                      |                        |                 | Shallow                           |                   |                                 |                             |                                    | 50.6                   | 25.4                                 |
| 3 - Weighted average   | ge of graphic  | al thermal    | conductivity       |             |                |                   |                               |                      |                        |                 | Deep                              |                   | 54.0                            |                             |                                    | 53.6                   | 48.9                                 |
| 4 - Weighted average   | ge of Norder   | ıg's therma   | l conductivit      | У           |                |                   |                               |                      |                        |                 |                                   |                   |                                 |                             |                                    |                        | L                                    |
| 5 - Harmonic mean      | of thermal c   | onductivity   | ,                  |             |                |                   |                               |                      |                        |                 |                                   |                   |                                 |                             |                                    |                        | l                                    |
| 6 - Heat flow derive   | d from grap    | hical metho   | bd                 |             |                |                   |                               |                      |                        |                 |                                   |                   |                                 |                             |                                    |                        | l                                    |
| 7- Heat flow derive    | d from Equat   | tion 1 for ea | ach formatio       | n           |                |                   |                               |                      |                        |                 |                                   |                   |                                 |                             |                                    |                        | <u> </u>                             |
| 8 - Heat Flow derive   | ed from Equa   | ation 1 and   | Nordengs $\lambda$ |             |                |                   |                               |                      |                        |                 |                                   |                   |                                 |                             |                                    |                        | <u> </u>                             |
| 9 - Heat flow derive   | d from Bulla   | rd's Metho    | d                  |             |                |                   |                               |                      |                        |                 |                                   |                   |                                 |                             |                                    |                        | l                                    |
| 10 - Heat flow deriv   | ed using har   | monic mea     | n method           |             |                |                   |                               |                      |                        |                 |                                   |                   |                                 |                             |                                    |                        | I                                    |
| 11- FU/HC/FH - For     | t Union Grou   | p/Hell Cree   | ek Formation       | n/Fox Hills | Formatio       | n combin          | ed                            |                      |                        |                 |                                   |                   |                                 |                             |                                    |                        | 1                                    |