THE ALUMINA CONTENT OF THE BEAR DEN MEMBER (GOLDEN VALLEY FORMATION) AND THE RHAME BED (SLOPE FORMATION) IN WESTERN NORTH DAKOTA

by

Edward C. Murphy

REPORT OF INVESTIGATION NO. 112 NORTH DAKOTA GEOLOGICAL SURVEY Edward C. Murphy, State Geologist Lynn D. Helms, Director Dept. of Mineral Resources 2013

Contents

INTRODUCTION	1
GEOLOGY	1
PREVIOUS STUDIES.	2
FIELD WORK	7
LABORATORY ANALYSIS	8
ALUMINA CONTENT	11
STUDY AREAS	14
Bear Den - Killdeer Area	14
Bear Den - Dickinson.	25
Rhame Bed - Bowman Area	38
Rhame Bed - Mott	52
Rhame Bed - Elgin.	66
CLAY MINERALOGY	81
Additional Clay Mineralogy	84
CONCLUSIONS	85
REFERENCES	87
APPENDIX A - Sample Locations	90
APPENDIX B - Chemistry	98
APPENDIX C - Chemistry by Unit	166
APPENDIX D - Clay Mineralogy by X-Ray Diffraction	209

On the cover: The Golden Valley Formation exposed in a small butte north of Marshall in Dunn County.

Illustrations

Fig	ure	
1.	Generalized surface geology map of North Dakota.	2
2.	An outcrop of the Rhame Bed in Grant County.	3
3.	An outcrop of the brightly colored Bear Den Member in Dunn County	3
4.	The Cenozoic portion of the stratigraphic column of North Dakota	4
5.	Examples of two claystone samples collected during this project	8
6.	Samples 24a-24i prior to submittal to NDSU	9
7.	A layer of silcrete tops the Rhame Bed in Adams County 1	0
8.	The surface of the silcretes range from earthy to vitreous 1	0
9.	Average alumina and silica profiles for Paleocene rocks in western North Dakota 1	3
10.	Location map of the sample sites (numbered black dots) in this study 1	5
11.	Geologic cross-section of selected sample sites in northern Dunn, western Mercer, and north-	
	western Morton counties 1	5
12.	Photograph, measured section, and alumina profile for Sample Site 24 1	6
13.	Photograph, measured section, and alumina profile for Sample Site 22 1	6
14.	Photograph, measured section, and alumina profile for Sample Site 18 1	8
15.	Photograph, measured section, and alumina profile for Sample Site 19 1	9
16.	Photograph and measured section of Sample Site 17. 2	20
17.	Photograph, measured section, and alumina profile for Sample Site 21 2	21
18.	Photograph, measured section, and alumina profile for Sample Site 20 2	2
19.	Photograph, measured section, and alumina profile for Sample Site 15 2	23
20.	Photograph and measured section of Sample Site 3. 2	24
20.	Photograph and measured section of Sample Site 3. 2	24
21.	Geologic cross section of selected sample sites in southern Dunn and northeastern Stark cos 2	25
22.	Photograph, measured section, and alumina profile for Sample Site 23 2	26
23.	Photograph, measured section, and alumina profile for Sample Site 7 2	27
24.	Photograph and measured section of Sample Site 16. 2	28
25.	Photograph, measured section, and alumina profile for Sample Site 6	29
26.	Photograph and measured section of Sample Site 5	60
27.	Photograph, measured section, and alumina profile for Sample Site 4	51
28.	Photograph and measured section of Sample Site 8 3	52
29.	Photograph and measured section of Sample Site 9	33
30.	Photograph, measured section, and alumina profile for Sample Site 30	64
31.	Photograph and measured section of Sample Site 31 3	5
32.	Photograph, measured section, and alumina profile for Sample Site 46	6
33.	Photograph, measured section, and alumina profile for Sample Site 32	57
34.	Geologic cross-section of selected sample sites in Slope and Bowman counties	8
35.	Photograph and measured section of Sample Site 14	;9
36.	Photograph and measured section of Sample Site 10 4	0
37.	Photograph and measured section of Sample Site 11	1
38.	Photograph and measured section of Sample Site 12. 4	12
39.	Photograph, measured section, and alumina profile for Sample Site 13	13
40.	Photograph, measured section, and alumina profile for Sample Site 47	4

41.	Photograph, measured section, and alumina profile for Sample Site 48.	45
42.	Photograph and measured section of Sample Site 49.	46
43.	Photograph, measured section, and alumina profile for Sample Site 56.	47
44.	Photograph and measured section of Sample Site 50.	48
45.	Photograph and measured section of Sample Site 55.	49
46.	Photograph and measured section of Sample Site 54.	50
47.	Photograph and measured section of Sample Site 53.	51
48.	Geologic cross-section of selected sample sites in Adams and southeastern Hettinger cos.	52
49.	Photograph and measured section of Sample Site 52.	53
50.	Photograph, measured section, and alumina profile for Sample Site 51.	54
51.	Photograph and measured section of Sample Site 37.	55
52.	Photograph and measured section of Sample Site 36.	56
53.	Photograph, measured section, and alumina profile for Sample Site 41.	57
54.	Photograph, measured section, and alumina profile for Sample Site 38.	58
55.	Photograph and measured section of Sample Site 39.	59
56.	Photograph and measured section of Sample Site 40.	60
57.	Photograph, measured section, and alumina profile for Sample Site 35.	61
58.	Photograph and measured section of Sample Site 33.	62
59.	Photograph, measured section, and alumina profile for Sample Site 34.	63
60.	Photograph, measured section, and alumina profile for Sample Site 44.	64
61.	Photograph, measured section, and alumina profile for Sample Site 45.	65
62.	Geologic cross-section of selected sample sites in Grant and Morton counties.	66
63.	Photograph, measured section, and alumina profile for Sample Site 43.	67
64.	Photograph and measured section of Sample Site 42.	68
65.	Photograph, measured section, and alumina profile for Sample Site 28.	69
66.	Photograph and measured section of Sample Site 27.	70
67.	Photograph and measured section of Sample Site 26.	71
68.	Photograph and measured section of Sample Site 25.	72
69.	Photograph, measured section, and alumina profile for Sample Site 29	73
70.	Photograph and measured section of Sample Site 60.	74
71.	Photograph, measured section, and alumina profile for Sample Site 61.	75
72.	Photograph, measured section, and alumina profile for Sample Site 59.	76
73.	Photograph and measured section of Sample Site 57.	77
74.	Photograph and measured section of Sample Site 58.	78
75.	Photograph and measured section of Sample Site 2.	79
76.	Photograph and measured section of Sample Site 1	80
77.	Clay mineralogy abundance trends for Site 22.	82
78.	Clay mineralogy abundance trends for Site 56.	83
79.	Basal spacings of the air-dried oriented mount clay specimens	83
80.	A comparison of the alumina profiles to the clay mineralogy and quartz profiles for Sample	
	Sites 18 and 29.	86
Tab	le	
1.	The Mean of Oxides by Stratigraphic Unit or Position Within That Unit.	12
2	The Alumina Content of the Bear Den Member, Rhame Bed, and Adjacent Strata	13

The Alumina Content of the Bear Den Member, Rhame Bed, and Adjacent Strata.
Alumina, clay mineralogy, and quartz concentrations for Sample Sites 18 and 29.
85

INTRODUCTION

The vast majority of oil wells that are being drilled in the Williston Basin employ hydraulic fracturing as a completion technique. These wells use, on average, three to five million pounds of proppant, be it natural sand or ceramic beads, to keep these fractures open. Because of the tremendous amount of product utilized in North Dakota, the North Dakota Geological Survey undertook: 1) a study to find sand deposits in North Dakota that would meet the criteria and could be used as natural proppant and 2) a study to find local clay resources that could be utilized in the manufacture of ceramic proppant. The results of the sand study were reported by Anderson (2011). In the clay study, we focused on kaolinite deposits because high-aluminum kaolinite is one of the main ingredients in ceramic proppant.

GEOLOGY

Approximately three fourths of North Dakota is covered by glacial deposits (Figure 1). Till is the dominant glacial sediment and consists of a mixture of sand, silt, clay, pebbles, and boulders. The clays in till are a mixture of montmorillonite, illite, kaolinite, and chlorite which are an accurate reflection of the mineralogy of the clays that dominate the Paleocene and Cretaceous rocks in North Dakota that were ground into till by the glaciers. The Fort Union Group (Paleocene) dominates the landscape of southwestern North Dakota, is nonmarine (except for the Cannonball Formation), and consists of alternating sandstone, siltstone, mudstone, claystone, and lignite. Several studies in the 1960s and 1970s used x-ray diffraction to analyze samples from the Bullion Creek and Sentinel Butte Formations (Fort Union Group). These studies determined that montmorillonite and illite were the dominant clays with lesser amounts of chlorite and kaolinite (Chew and Boyd, 1960; Sigsby, 1966; Emanuel et al., 1976; Brekke, 1979). Emanuel and others (1976) determined that 87 rock samples from the Bullion Creek Formation were predominantly illite and montmorillonite with lesser amounts of kaolinite and chlorite and seven samples from the Sentinel Butte Formation were predominantly montmorillonite. Brekke (1979) analyzed 26 rock samples from the Bullion Creek and Sentinel Butte Formations and determined montmorillonite was the dominant clay mineral in both formations. He also noted that illite and chlorite occur in approximately equal amounts, accompanied by minor amounts of kaolinite. Murphy and others (1993) attempted to differentiate between Fort Union and White River strata using clay mineralogy. However, they found sodium montmorillonite was the dominant clay mineral in 24 samples from these rock units. Chew and Boyd (1960) reported that the basal Chadron Formation (Chalky Buttes Member) was kaolinite rich, but did not provide supportive evidence.

There are two kaolinite-rich stratigraphic units exposed at the surface in North Dakota, the Bear Den Member of the Golden Valley Formation and the Rhame Bed of the Slope Formation (Figures 2 and 3). These stratigraphic units are dazzling white, gold, purple, and/or light gray in color; range from claystone, mudstone, siltstone, sandstone, and occasionally lignite; are 10-40 feet thick; Paleocene in age; and are thought to have formed as a result of intensive leaching during a prolonged period of weathering (Murphy, 2009). The Bear Den Member is latest Paleocene in age. The prolonged and/or intensive weathering that lead to the creation of the kaolinite clays occurred just prior to the beginning of the Eocene Epoch some 55.8 million years ago. The weathering phenomenon that created the Rhame Bed occurred approximately 61 million years ago during mid-Paleocene time (Figure 4).

Figure 1. Generalized surface geology map of North Dakota.

PREVIOUS STUDIES

A number of studies have been undertaken over the years to determine the clay mineralogy or alumina (aluminum oxide) content of clays and claystones in North Dakota. Many of these studies focused on either the Bear Den Member of the Golden Valley Formation or the Rhame Bed of the Slope Formation in North Dakota. The North Dakota Geological Survey began studying clays as early as 1892. The Fourth Biennial Report of the North Dakota Geological Survey, published in 1906, dealt entirely with the clay resources of North Dakota. The Bear Den Member was the focus of many of these early studies and was called the "white fire clays" by Leonard (1906) and either the "white clays" or the "white high grade clays" by Clapp and Babcock (1906).

In 1942, the Minerals Development Corporation built a plant at Marmarth to produce alumina from bentonites in the Hell Creek Formation. The plant used technology developed by professors at the University of North Dakota. However, the plant was shut down after only a few months of operation due to low alumina production (Clarke, 1948).

Figure 2. An outcrop of the Rhame Bed in Grant County. The silcrete at the top of the bed forms the low, flat lying surface that extends into the slope of the hill in the background.

Figure 3. An outcrop of the brightly colored Bear Den Member in Dunn County. The brown colored rocks of the upper member of the Golden Valley Formation (the Camels Butte Member) are exposed in the background.

AGE MILLIONS OF YEARS BEFORE PRESENT ERATHEM		SY		STEM	UENCE	ROCK UNIT				ROCK COLUMN	MAXIMUM THICKNESS																			
				SERIES	SEG	GROUP	FORMATION	MEMBER	RES	EXPOSED UNITS SHOWN WITH IRREGULAR, ERODED RIGHT-HAND MARGIN	FEET (METERS)																			
-0.01-		Holocene		OAHE	RIVERDALE PICK CITY AGGIE BROWN MALLARD ISLAND	Salt Water Gravel		100 (30)																						
	-2.6 - S.3 - State of the second seco			Pleistocene	JAS	COLEHARBOR	WEST CENTRAL EASTERN RED RIVER VALLEY SHERACK POPLAR RIVER BRENNA FALCONER HUOT ARGUSVILLE HORSESHOE VALLEY CHURCHS FERRY MEDICINE HILL CAND GRAFTON CANDO		Gravel Water Stone Peat Clay		1,000 (300)																			
-2.6-			Pliocene	TE		(Unnamed Unit)		Gravel Water		300 (91)																				
- 5.3 -			ARIKAREE		Rock		330 (101)																							
- 23.0 -	5			Oligocene		WHITE DIVED	BRULE				200 (61)																			
- 33.9 -	DIC				\sim		CHADRON	SOUTH HEART CHALKY BUTTES	Clay Gravel		140 (43)																			
- 55.8 -	NOZO		TERTIARY PALEOGENE	TERTIARY PALEOGENE	TERTIARY PALEOGENE	Eocene			GOLDEN VALLEY	CAMELS BUTTE BEAR DEN	Clay		400 (122)																	
	CE	TERTIARY				TERTIARY	TERTLARY	PALEOGENE	PALEOGENE	OGENE	OGENE	OGENE	OGENE	OGENE	OGENE	TERTIARY OGENE	TERTIAR) OGENE	OGENE	OGENE	OGENE	OGENE	OGENE				SENTINEL BUTTE		Clinker Uranium Coal Leonard- ite Water		650 (198)
										Paleocene		FORT BULLION Coal Clinke	Water Stone Coal Clinker		650 (198)															
													SLOPE		Clay Coal Clinker	······································	270 (82)													
							CANNONBALL		Clay		255 (78)																			
-65.5-			LUDLOW		Water Clinker Coal		300 (91)																							
00.0									Class	$ \rightarrow \rightarrow$																				

Figure 4. The Cenozoic portion of the stratigraphic column of North Dakota (modified from Murphy et al., 2009). The white bed at the top of the Slope Formation on this stratigraphic column is the Rhame Bed.

In 1948, Fremont Clarke (U.S. Bureau of Mines) reported on the alumina content of claystones in the White River Group from the Chalky Buttes in Slope County and the South Heart Little Badlands in Stark County, the Hell Creek Formation in the Little Missouri River Badlands near Marmarth in Slope County, and from the Sentinel Butte Formation northwest of Belfield in Billings County. Clarke collected 417 clay samples, 408 of which were bentonites. A majority of his samples came from the South Heart Member of the Chadron Formation (White River Group) in the South Heart Little Badlands and the Chalky Buttes (what he called the "upper bed"). He determined the aluminum oxide concentrations of these claystones ranged from 16-22%.

The Great Northern Railway Company published a report in 1958 entitled *Williston Basin Clays*. The company collected more than a dozen samples and drilled several test holes adjacent to outcrops of the Bear Den Member in Mountrail County. They referred to the rocks that would later be named the Bear Den Member as the "White Earth Clay" and were aware they occurred in the lower part of the Golden Valley Formation. They determined the bed was up to 30 feet thick and contained 21-26% alumina.

In 1959, the North Dakota Geological Survey published a report on the alumina potential of claystones in western and central North Dakota by Miller Hansen. Hansen collected 125 claystone samples from the Bullion Creek and Slope Formations (known at that time as the Tongue River and Ludlow Formations) and the Bear Den Member of the Golden Valley Formation at 44 localities. Thirty of those samples came from an extended Bear Den deposit where the Hebron Brick Company was mining clay. Hansen reported the alumina content for the Bullion Creek samples ranged from 10-15% and the Bear Den samples had an upper range of 25.3%.

Freas (1959, 1962) studied the Bear Den Member of the Golden Valley Formation near Dickinson and mapped and sampled the Rhame Bed along 28 square miles of Deep Creek in Slope County. He mapped the Golden Valley Formation over an area of approximately 1,000 square miles and collected nearly 400 rock samples. Freas concluded the Bear Den contained, on average, 66% kaolinite, 27% illite, and 7% montmorillonite. He noted the percentage of kaolinite tended to decrease vertically downward through the Bear Den Member and montmorillonite was the dominant constituent of the mixed clays both above and below that rock unit. Only fifty-two of the clay sample localities are plotted on a geologic map in his reports. His project was supported by the Northern Pacific Railway Company.

In 1960 and 1961, the Northern Pacific Railway Company reported the results of an investigation concerning the thickness and alumina content of the Bear Den Member of the Golden Valley Formation in western North Dakota (Chew and Boyd, 1960; Chew, 1961). The Chew and Boyd study focused on Stark, Hettinger, and southern Dunn counties. The Chew study covered an area of approximately 600 square miles in Mercer and northern Dunn counties. These studies analyzed the alumina content of 53 claystone samples (including some collected by Freas) and mapped the Golden Valley/Sentinel Butte contact throughout the study areas. Bed thickness, extent, alumina content, and 15 resource blocks were plotted on maps of the area. Their resource blocks have a combined area of 43 square miles, contain 867 million tons of Bear Den claystone, and a weighted alumina average range of 18.8-24.1%. Throughout the entire study area, alumina ranged from 18.4-29.8% and bed thickness from 5-21 feet. Chew and Boyd (1960) also reported the alumina content of five Rhame Bed samples along Deep Creek in an area mapped and sampled by Freas. The alumina content of these samples averaged 21.4%. Chew and Boyd concluded that the main controls on the alumina content of the samples were the clay mineralogy and the percentage of clay minerals. Unfortunately, neither the Freas nor the Chew and Boyd samples were tied to measured sections. Even with this major shortcoming, the Northern Pacific Railway Company studies were the most thorough investigations of the alumina content of the Bear Den Member up until the time of the 2011 North Dakota Geological Survey study.

Hickey (1977) did the most comprehensive mapping of the Golden Valley Formation that had been done up to that point and presented it at a scale of 1:250,000. His map did not extend far enough south to include outcrops of the Bear Den Member in central and southern Grant County. Hickey's study focused on the stratigraphy and paleontology of the Golden Valley Formation, but he did analyze 11 clay samples. He reported the overlying Camels Butte Member contained 12% kaolinite, 46% montmorillonite, 36% illite, and 6% chlorite; the Bear Den Member 65% kaolinite, 16% montmorillonite, 18% illite, and 1% chlorite; and the underlying Sentinel Butte Formation 17% kaolinite, 76% montmorillonite, 7% illite, and a trace of chlorite.

Wehrfritz (1978) mapped occurrences of the Rhame Bed in Bowman and Slope counties and measured two dozen geologic sections from outcrops in that area. Although Wehrfritz's thesis is a thorough stratigraphic study of the Rhame Bed, she did not attempt to determine the chemistry or the clay mineralogy of the bed.

Prichard (1980) measured eight geologic sections, augured 34 holes, and studied the cuttings of eight additional drill holes while investigating the Bear Den Member in an 85 square-mile-area of northwestern Mercer County. Prichard used x-ray diffraction to determine the clay mineralogy of 110 samples he collected from the Golden Valley and Sentinel Butte Formations. As a result, Prichard's thesis is the single best source of information on the stratigraphic variability of kaolinite in the lower Camels Butte Member, the Bear Den Member, and the upper Sentinel Butte Formation in a localized area. Prichard determined that the overlying Camels Butte Member contained 6% kaolinite, 54% montmorillonite, 31% illite, and 9% chlorite; the Bear Den Member 66% kaolinite, 18% montmorillonite, 16% illite, and no chlorite; and the underlying Sentinel Butte Formation 11% kaolinite, 57% montmorillonite, 29% illite, and 3% of chlorite. These percentages match Freas (1962) and Hickey (1977) very well for the Golden Valley Formation, but less so for the montmorillonite and illite content of the Sentinel Butte Formation. In general, the percentage of kaolinite decreased with stratigraphic depth from the top of the member, but it was not a consistent decline. Chemical analysis was performed on 18 of the samples using a microprobe and scanning electron microscope. Ten of these samples came from one location (GV-12) and demonstrated a general decline in alumina content down through the Bear Den Member.

Both the Bear Den Member and Rhame Bed have been utilized in North Dakota for the manufacture of ceramics. The Hebron Brick Company has been manufacturing bricks using claystone from the Bear Den Member since 1904. The Dickinson Fire and Pressed Brick Company began mining the Bear Den Member along the Heart River south of Dickinson in the early 1900s, but ceased operation in the late 1930s. In the 1960s, the Dickinson Clay Products Company produced ceramic sewer pipe and tiles from Bear Den Member claystones, but that plant was short lived due to competition from plastic sewer pipe. Claystone from the Bear Den Member as well as the Rhame Bed were also used to make pottery (Murphy, 1995).

Over the years, the North Dakota Geological Survey has mapped most of the Golden Valley Formation at a scale of 1:24,000. In only a handful of these maps, the Bear Den and Camels Butte Members have been mapped as separate units. In contrast, the Rhame Bed has only been mapped at a scale of 1:63,000 in portions of Slope and Bowman counties and at a scale of 1:125,000

throughout the remainder of its extent in Golden Valley, Adams, Grant, and Morton counties. The total tonnage of Bear Den and Rhame strata was determined by: 1) calculating the total area from existing maps using ArcInfo, 2) using an average outcrop width of 5,000 feet for the Rhame Bed in areas where the contact of the Slope Formation and the overlying Bullion Creek Formation were mapped at 1:125,000 feet, 3) using an average thickness of 15 feet and an average weight of 43 pounds per cubic foot, and 4) assuming one-third of the total tonnage was economically mineable. As a result, it was calculated there are over 1.7 billion tons of mineable kaolinite-rich rock within the Rhame Bed and Bear Den Member.

FIELDWORK

In early 2011, five claystone samples were collected from the Bear Den Member of the Golden Valley Formation in Mercer and Morton counties and analyzed for clay mineralogy and chemistry using x-ray diffraction and x-ray fluorescence. The alumina content of these samples ranged from 26-38%, encouraging further study. Potential sample sites were then identified on 1:20,000 scale black and white aerial photographs (stereo pairs) as well as on GoogleEarth and compared to geologic surface maps. Outcrops that appeared to contain either bed were then field investigated. In addition, county roads and trails were traversed in areas where the Golden Valley/Sentinel Butte or Bullion Creek/Slope contacts had been mapped in hopes of finding outcrops that due to size, partial vegetated cover, or slope were not visible on aerial photographs. As a result of the fieldwork, 232 additional rock additional samples (120 Rhame Bed, 99 Bear Den, 7 Bullion Creek, 3 Camels Butte, and 3 Sentinel Butte) were collected at 61 study sites across southwestern North Dakota from September 2011 to January 2012 (Appendix A). In areas of limited outcrop, only one or two samples were collected (Figure 5). In areas of good rock exposure, up to a dozen samples were collected along a vertical profile to determine stratigraphic variation in kaolinite and alumina content at a given location (Figure 6). An entrenching tool was used to dig back six inches or more into the outcrop to reach fresh exposures. After the sample was obtained, the depression was backfilled with waste rock and tamped into place.

Typically, both the Bear Den and the Rhame Bed are relatively easy to identify in the field because they are more brightly colored than the surrounding rocks, form relatively steep nonvegetated slopes, the kaolinite-rich claystones and mudstones are greasy to the touch, the Bear Den Member often contains tiny iron oxide and iron sulfide spheres, and both beds are often capped by a siliceous layer (silcrete) that tends to form low, flat-topped hills and buttes. However, local variations in the color of either of these beds or the adjacent beds can make it more difficult to identify them in the field. Locally, the color of the Bear Den or Rhame Bed can be subdued or drab to the point they do not contrast with the surrounding rock. In addition, there are occasionally other brightly colored beds within the Fort Union Group that can be mistaken for these on a local basis.

Wehrfritz (1978) identified the siliceous layer at the top of the Rhame Bed as a silcrete. Previously it had been commonly termed a pseudo-quartzite. Silcrete is a silica-rich layer that typically occurs at the top of a paleosol (an ancient soil horizon). Since the work of Wehrfritz, the brightly colored beds of the Bear Den and Rhame Bed have generally been interpreted to be paleosols. Silcrete is generally considered to have formed in a hot, arid climate where silica was dissolved and redeposited (Figures 7 and 8). Stems, some that have been identified as *Equisetum* (horsetail),

Figure 5. Examples of two claystone samples collected during this project. Roughly twice as much sample was collected in the field as is shown in this photograph. Samples were submitted to the Center for Nanoscale Science and Engineering Laboratory at North Dakota State University prior to this photo.

are common in both the silcrete at the top of the Rhame Bed as well as the Taylor Bed (the name given to the silcrete at the top of the Bear Den Mbr.). These silcretes are unique in the North Dakota stratigraphic column. As a result, when a layer of silcrete is present in outcrop it positively identifies the presence of either of these two kaolin-rich beds. Because the silcrete is so resistant to weathering, chunks of silcrete (float or lag) can be found throughout portions of western North Dakota lying on rocks up to 70 million years old.

LABORATORY ANALYSIS

The Center for Nanoscale Science and Engineering Laboratory (CNSEL) at North Dakota State University analyzed the chemistry and the clay mineralogy of the samples. Due to funding limits, only 197 of the 232 samples were submitted to the laboratory for x-ray fluorescence analysis (XRF) and 42 samples for x-ray diffraction (XRD) analysis. Preference was given to those Bear Den and Rhame Bed samples that were obtained from vertical profiles.

In the CNSEL, as received samples for XRF analysis were ground using an automated mortar and pestle for 30 minutes. An aliquot part was taken from the ground material and used to make fused

Figure 6. Samples 24a-24i prior to submittal to NDSU. Sample 24a was taken from the top of the Bear Den Member (far right) and Sample 24i was taken from just below the Bear Den Member in the Sentinel Butte Formation (far left). Samples were lightly crushed before they were submitted to the laboratory.

beads by the borate fusion method. Semi-quantitative elemental analyses were performed on the fused beads using a Wavelength-Dispersive X-Ray Fluorescence Spectrometer (Rigaku - ZSX Primus) equipped with a 4kW Rhodium X-Ray tube. An additional aliquot portion was obtained from the ground sample material and used to determine mass loss between room temperature and 1000°C by thermogravimetric analysis (TGA). TGA was used to determine loss on ignition (LOI) values which were applied to the final data for all analyzed samples. To be consistent with how industry reports alumina values, the TGA values were removed and the mass percent was recalculated.

As received samples were ground using an automated mortar and pestle for 30 minutes for XRD analysis. The resulting powder was fractioned to clay sized particles and an oriented clay specimen was prepared. An XRD pattern was collected from $2-50^{\circ} 2\theta$ with a 0.02° step size and 1.0 second count time on a Rigaku Ultima IV X-Ray Diffractometer with Cu-K α radiation operated at 40kV and 44mA. Crystalline phases were identified by computer search-match procedures, which employ the ICDD Powder Diffraction File, using MDI Jade 9.0 software.

Figure 7. A layer of silcrete tops the Rhame Bed in Adams County.

Figure 8. The surface of the silcretes range from earthy to vitreous due to the polishing action of wind and often contain stem molds or casts.

ALUMINA CONTENT

The alumina content of 90 Bear Den samples ranged from 7.3-33.8% with a mean alumina content of 20.4% (Appendicies B and C). Silica in these samples ranged from 53.6-90.3% with a mean of 72.5%. These samples had an iron oxide mean of 3.02% and potassium oxide mean of 1.49%. The only other oxide that occasionally reached the 1% concentration level was titanium oxide with a mean of 0.95% and a maximum concentration of 2.75% (Table 1).

The alumina content of 92 Rhame Bed samples ranged from 6.1-27.2% with a mean alumina content of 17.6% (Table 2, Figure 9, Appendicies B and C). Silica in these samples ranged from 62.7-90.9% with a mean of 75.6%. The iron oxide content of these samples had a mean of 1.8%, much less that of the Bear Den Member. This is not surprising because Rhame Bed outcrops do not typically have the visible iron (iron oxide staining or pyrite and limonite spherules) observed at Bear Den outcrops. Rhame Bed samples had a mean potassium oxide concentration of 2.1%, a titanium oxide mean of 0.76%, and a titanium oxide maximum of 1.2%.

In comparison, 15 samples obtained from the Slope, Bullion Creek, and Sentinel Butte Formations contained less alumina than the Bear Den Member, but roughly the same amount as the Rhame Bed (17.8%) with a mean silica value of 72.3% (Appendicies B and C).

Vertical alumina profiles were constructed for each locality where three or more samples were analyzed. This resulted in the creation of 30 profiles (15 Bear Den Member and 15 Rhame Bed). In addition, eight of these profiles also incorporate analyses from either above or below the kaolinrich beds. Alumina in both the Bear Den and the Rhame Bed was more than twice as likely to increase vertically through the outcrop as it was to decrease. The trend lines in ten Bear Den and ten Rhame Bed profiles increased, they decreased in four Bear Den and four Rhame Bed profiles, and each stratigraphic unit had one trend line that was relatively flat. These trends were also evident when both the Bear Den Member and the Rhame Bed were split into three parts; an upper (the top five feet below the base of the silcrete), a middle (5-15 feet below the base of the silcrete), and a lower (the basal five feet). The mean of the alumina content increased from the upper part down through the lower part of both rock units (Table 2 and Figure 9). The mean alumina values increased from 20% to 21% to 22% going from the upper to the lower Bear Den as silica fluctuated from 73.9% to 71.6% to 71.9% through this same zone. The average alumina values do not have as consistent a pattern in the Rhame Bed going from 16.4% in the upper part of the bed to 18.8% in both the middle and lower (Table 2). Silica, on the other hand, consistently decreased from the upper to the lower part of the bed going from 77.4% to 74.3% to 73.1%.

The results of this study conflict somewhat with those of Prichard (1980) who generally found alumina concentrations decreased stratigraphically through the Bear Den Member. This may have resulted from Prichard's relatively few chemical analyses and/or his localized study area in north-western Mercer County. It should be noted that Site 19 (of this study) is adjacent to two of Prichard's localities, but has an increasing alumina profile.

Weighted alumina values were generated for each sample by multiplying the alumina mass percent value by the thickness of the lithologic layer they were obtained from. A weighted mean alumina

		BEAR DEN	MEMBER		USB	LBC	RHAME BED				US
	Upper	Middle	Lower All		All	All	Upper	Middle	Lower	All	All
	Mass %	Mass %	Mass %	Mass %	Mass %	Mass %	Mass %	Mass %	Mass %	Mass %	Mass %
Na2O	0.182	0.215	0.335	0.202	0.307	0.514	0.156	0.206	0.150	0.186	0.315
MgO	0.503	0.540	0.320	0.535	0.624	2.838	0.765	0.875	1.358	0.869	0.802
Al2O3	19.683	21.021	22.118	20.415	19.639	15.814	16.434	18.789	18.820	17.621	18.787
SiO2	73.903	71.589	71.913	72.543	73.598	70.090	77.406	74.270	73.107	75.624	73.934
P2O5	0.033	0.042	0.034	0.039	0.032	0.094	0.032	0.046	0.053	0.041	0.064
SO3	0.458	0.263	0.379	0.377	0.629	0.538	0.525	0.302	0.184	0.387	0.236
CI	0.002	0.002	0.003	0.002	0.000	0.003	0.002	0.002	0.001	0.002	0.001
К2О	1.345	1.564	1.300	1.494	1.717	2.500	1.801	2.343	2.579	2.101	2.292
CaO	0.308	0.151	0.077	0.212	0.059	3.808	0.415	0.264	0.693	0.399	0.240
TiO2	0.965	0.982	0.900	0.952	0.804	0.742	0.778	0.764	0.747	0.765	0.723
V2O5	0.032	0.036	0.031	0.034	0.030	0.020	0.022	0.027	0.030	0.025	0.024
Cr2O3	0.011	0.012	0.011	0.011	0.012	0.009	0.009	0.011	0.012	0.010	0.011
MnO	0.011	0.015	0.012	0.016	0.014	0.060	0.007	0.013	0.017	0.012	0.012
Fe2O3	2.422	3.414	2.433	3.019	2.367	2.807	1.487	1.921	2.077	1.794	2.373
Co2O3	0.002	0.002	0.002	0.002	0.002	0.003	0.002	0.002	0.002	0.002	0.004
NiO	0.013	0.014	0.015	0.014	0.014	0.015	0.015	0.014	0.015	0.015	0.017
CuO	0.012	0.014	0.013	0.013	0.013	0.013	0.011	0.012	0.014	0.012	0.013
ZnO	0.004	0.006	0.009	0.006	0.011	0.010	0.008	0.009	0.011	0.009	0.021
Ga2O3	0.004	0.004	0.005	0.004	0.003	0.003	0.003	0.003	0.003	0.003	0.004
As2O3	0.002	0.002	0.002	0.002	0.002	0.001	0.001	0.002	0.002	0.002	0.003
Br	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000
Rb2O	0.008	0.010	0.009	0.009	0.009	0.014	0.012	0.014	0.014	0.013	0.014
SrO	0.008	0.009	0.007	0.009	0.009	0.010	0.008	0.009	0.010	0.009	0.012
Y2O3	0.002	0.002	0.001	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.003
ZrO2	0.035	0.033	0.027	0.034	0.028	0.033	0.040	0.034	0.031	0.036	0.035
Nb2O5	0.002	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.001
MoO3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
BaO	0.039	0.045	0.036	0.043	0.068	0.043	0.040	0.050	0.054	0.046	0.045
HfO2	0.005	0.005	0.005	0.005	0.003	0.004	0.006	0.005	0.004	0.005	0.006
PbO	0.002	0.004	0.001	0.003	0.000	0.006	0.003	0.003	0.003	0.003	0.001
ThO2	0.000	0.001	0.000	0.001	0.000	0.001	0.001	0.001	0.001	0.001	0.000
Ра	0.002	0.003	0.002	0.003	0.003	0.004	0.004	0.005	0.004	0.004	0.005
U308	0.000	0.001	0.000	0.000	0.000	0.002	0.001	0.001	0.001	0.001	0.000

Table 1. The Mean of Oxides by Stratigraphic Unit or Position Within That Unit.

USB = Upper Sentinel Butte Fm., LBC =Lower Bullion Creek Fm., US = Upper Slope Fm.

value was then calculated for the Bear Den Member or the Rhame Bed at each sample locality. These weighted alumina results, along with a contour map of the elevation at the top of the Rhame Bed and the Bear Den Member, were published for 47 localities in southwestern North Dakota (Murphy, 2012). Weighted alumina outcrop values ranged from 14-25% for the Bear Den Member and 13-25% for the Rhame Bed. The majority of Bear Den outcrops (12 of 17) averaged at or above 20% alumina while only 8 of 30 Rhame Bed outcrops averaged that high.

Table 2. The Alumina Content of the Bear Den Member, Rhame Bed, and Adjacent Strata										
		Al_2O_3				SiO ₂				
	Analyses	Low	High	Mean	Low	High	Mean			
BEAR DEN MEMBER	90	7.3	33.8	20.4	53.6	90.3	72.5			
Upper Bear Den	26	11.0	27.4	19.7	64.3	84.9	73.9			
Middle Bear Den	44	7.3	33.8	21.0	53.6	90.3	71.6			
Lower Bear Den	5	13.8	32.1	22.1	61.5	81.1	71.9			
Upper SENTINEL BUTTE FM	3	19.0	20.2	19.6	71.8	75.1	73.6			
Lower BULLION CREEK FM	6	13.9	19.6	15.8	60.5	82.7	70.1			
RHAME BED	92	6.1	27.2	17.6	62.7	87.2	75.6			
Upper Rhame Bed	44	6.1	27.2	16.4	65.5	90.2	77.4			
Middle Rhame Bed	35	10.2	25.4	18.8	64.2	87.2	74.3			
Lower Rhame Bed	9	15.8	23.0	18.8	62.7	78.1	73.1			
Upper SLOPE FM	6	17.2	20.4	18.8	68.8	75.8	73.9			

The alumina values from this study were presented in a series of 100K (Murphy, 2013a-h) and 24K (Murphy, 2013i-p) maps for western North Dakota. In addition, alumina values from Hansen (1959), Chew and Boyd (1960), and Prichard (1980) were also plotted on these maps.

STUDY AREAS

The study sites were split into five areas, two Bear Den and three Rhame Bed, to facilitate recognition of general lithologic characteristics and alumina patterns. Groupings primarily followed along 100k map borders. Bear Den Member outcrops were split into two groups; a Dickinson and a Killdeer area (named after the primary 100k sheets). Rhame Bed outcrops were split into three groups; Bowman, Mott, and Elgin (Figure 10).

Bear Den – Killdeer Area

The Killdeer Area includes eight Bear Den Member sample sites within the Killdeer 100K map sheet along with one sample site in each of the Glen Ullin, Dickinson, and Belfield sheets (Figure 10). Most sample localities in this area occur within a ten-mile-radius of the town of Dodge or along the edge of the Russian Spring Creek Escarpment.

The Bear Den Member averages about 20 feet thick in this area and the dominant lithologies are white to orange/white mudstone and claystone (Figures 11-20). As is typical of the Bear Den throughout western North Dakota, the upper contact was generally exposed, but the lower contact was not. Occasionally color zones could be traced from location to location (such as between sites 22 and 24). Typically, however, individual lithologic beds, aside from the Taylor and the Alamo Bluff, could not be traced across a large area. There is a thin, dark gray to black claystone present in the Bear Den Member at site 24 that appears to correlate to a thicker, black claystone at sites 18 and 19 as well as in section 34 (T146N, R90W). The black claystone in section 34 was collected in 2010 and found to contain 38% alumina and 46% of the clay minerals were determined to be kaolinite. That same layer contained 25-34% alumina in samples 22F, 18D, and 19D. In general, the northeast corner of this area contained the highest average weighted alumina concentrations found in the study. The majority of the outcrops in this area are at or near the base of small, flat-topped buttes. Overburden may be excessive away from the edges of these hills and buttes.

The lithologic colors used in the measured sections for figures 11-20, as well as 21-78, reflect the true color of the bed. This was done to make it easier for future workers to locate beds in question in the field.

Figure 10. Location map of the sample sites (numbered black dots) in this study. The cross sections noted in the section traces are displayed in Figures 11, 21, 34, 48, and 62. The Golden Valley Formation is shown in brown and the upper contact of the Slope Formation (Rhame Bed) in yellow.

Figure 11. Geologic cross-section of selected sample sites in northern Dunn, western Mercer, and northwestern Morton counties. See Figure 10 for location map. The following abbreviations are used for figures 11-76; CBM – Camels Butte Member, BDM - Bear Den Member, TSB – Sentinel Butte Formation, TBC – Bullion Creek Formation, RB – Rhame Bed, and TS Slope Formation.

Figure 12. Photograph, measured section, and alumina profile for Sample Site 24 (T145N, R97W section 16, NW/SE/SE). See Figure 10 for location map and Figure 11 legend for lithology.

Figure 13. Photograph, measured section, and alumina profile for Sample Site 22. See Figure 10 for location map and Figure 11 legend for lithology (T146N, R92W, Section 20, NE/NW/SE).

Figure 14. Photograph, measured section, and alumina profile for Sample Site 18 (T145, R91W, Section 12, NE/SW/SE). See Figure 10 for location map and Figure 11 legend for lithology.

Figure 15. Photograph, measured section, and alumina profile for Sample Site 19 (T145N, R90W, Section 11, SE/SE/NW). See Figure 10 for location map and Figure 11 legend for lithology.

Figure 16. Photograph and measured section of Sample Site 17 (T144N, R90W, Section 18, NE/NW/NE). See Figure 10 for location map and Figure 11 legend for lithology.

Figure 17. Photograph, measured section, and alumina profile for Sample Site 21 (T144N, R91W, Section 36, NW/SW/NW). See Figure 10 for location map and Figure 11 legend for lithology.

Figure 18. Photograph, measured section, and alumina profile for Sample Site 20 (T143N, R92W, Section 21, NE/SE/SW). See Figure 10 for location map and Figure 11 legend for lithology.

Figure 19. Photograph, measured section, and alumina profile for Sample Site 15 (T140N, R90W, Section 4, NW/SW/SW). See Figure 10 for location map and Figure 11 legend for lithology.

Figure 20. Photograph and measured section of Sample Site 3 (T140N, R88W, Section 4, NW/NW/SE). See Figure 10 for location map and Figure 11 legend for lithology.

Bear Den – Dickinson Area

The Dickinson Area includes 10 Bear Den Member sample sites within the Dickinson 100K map sheet along with two sample localities in the Killdeer 100K sheet (Figures 10, 21-33). All of these sample localities are within a 20-mile radius of the town of Dickinson. Most outcrops in this area occur within either the South Heart Badlands, the edge of the Russian Spring Creek Escarpment, or on isolated buttes.

The Bear Den Member is at least 15 feet thick in this area and the sample sites appear to have little in common regarding outcrop appearance. Sites 6 and 16 were fresh construction cuts so the colors that are typically associated with weathering (oxidation) on an outcrop face were absent. The rocks were poorly exposed at Site 4 and therefore subtle changes would not have been detectable.

Alumina content tends to be higher along the northern and southern portions of the area. The Bear Den Member appears to be close to the surface (based upon white (nonsaline) soils in plowed fields and small surface outcrops) in an area south of Dickinson A drilling program in sections 28-33 (T139N, R96W) is needed to determine the alumina content, overburden thickness, and influence of the South Heart Syncline on the dip of the rocks in this area.

Figure 21. Geologic cross section of selected sample sites in southern Dunn and northeastern Stark counties. See Figure 10 for location map.

Figure 22. Photograph, measured section, and alumina profile for Sample Site 23 (T142N, R96W, Section 29, NE/NE/SW). See Figure 10 for location map and Figure 21 legend for lithology.

Figure 23. Photograph, measured section, and alumina profile for Sample Site 7 (T141N, R95W, Section 25, NW/NW/NW). See Figure 10 for location map and Figure 21 legend for lithology.

Figure 25. Photograph, measured section, and alumina profile for Sample Site 6 (T139N, R94W, Section 4, NW/NW/NW). See Figure 10 for location map and Figure 21 legend for lithology.

Figure 26. Photograph and measured section of Sample Site 5 (T140N, R93W, Section 31, SE/SE/SW). See Figure 10 for location map and Figure 21 legend for lithology.

Figure 27. Photograph, measured section, and alumina profile for Sample Site 4 (T139N, R93W, Section 21, SE/SW/SW). See Figure 10 for location map and Figure 21 legend for lithology.

Figure 29. Photograph and measured section of Sample Site 9 (T139N, R97W, Section 36, NE/NE/SW). See Figure 10 for location map and Figure 21 legend for lithology.

Figure 30. Photograph, measured section, and alumina profile for Sample Site 30 (T138N, R96W, Section 16, NE/SE/NW). See Figure 10 for location map and Figure 21 legend for lithology.

Figure 31. Photograph and measured section of Sample Site 31 (T138N, R96W, Section 21, NE/ NW/NW). See Figure 10 for location map and Figure 21 legend for lithology.

Figure 32. Photograph, measured section, and alumina profile for Sample Site 46 (T137N, R97W, Section 36, NW/NW/SE). See Figure 10 for location map and Figure 21 legend for lithology.

Figure 33. Photograph, measured section, and alumina profile for Sample Site 32 (T136N, R97W, Section 11, SE/SE/NE). See Figure 10 for location map and Figure 21 legend for lithology.

Rhame Bed – Bowman Area

The Bowman Area contains 13 Rhame Bed sample sites, eight within the Bowman 100K map sheet and five within the adjoining Belfield 100K sheet (Figures 10, 34-47). The sites primarily fall along a northwest-southeast trending line that reflects the outcrop pattern of the Rhame Bed in this area. The best outcrops occur in the Little Missouri River Badlands and along Deep Creek. Outcrops are limited south and east of the town of Bowman.

The Rhame Bed is 15-22 feet thick in the four sample sites where the basal contact is exposed (sites 15, 49, 50, 58 – Figures 39-41, 43). Several other sites consist of a silcrete top underlain by 2-10 feet of white to dazzling white mudstone (Figures 37, 42, and 44). The Rhame Bed ranges from dazzling white to dull white to light gray in color in contrast to the more brightly colored Bear Den Member. This color contrast is evident when comparing Figure 13 to Figure 40. The weighted alumina content for sample sites in this area ranged from 13-18% with an average of 16%. Mining would likely be limited along Deep Creek and the Little Missouri River Badlands due to overburden thickness. Overburden is minimal on the low-lying silcrete-capped buttes west of the town of Bowman.

Figure 34. Geologic cross-section of selected sample sites in Slope and Bowman counties. See Figure 10 for location map.

Figure 35. Photograph and measured section of Sample Site 14 (T137N, R105W, Section 19, SE/NW/NW. See Figure 10 for location map and Figure 34 legend for lithology.

Figure 36. Photograph and measured section of Sample Site 10 (T136N, R106W, Section 28, SW/NW/ NW). See Figure 10 for location map and Figure 34 legend for lithology.

Figure 38. Photograph and measured section of Sample Site 12 (T136N, R105W, Section 11, NE/SE/SW). See Figure 10 for location map and Figure 34 legend for lithology.

Figure 39. Photograph, measured section, and alumina profile for Sample Site 13 (T136N, R104W, Section 5, NW/NE/NE). See Figure 10 for location map and Figure 34 legend for lithology.

Figure 40. Photograph, measured section, and alumina profile for Sample Site 47 (T135N, R104W, Section 28, SE/NE/SE). See Figure 10 for location map and Figure 34 legend for lithology.

Figure 41. Photograph, measured section, and alumina profile for Sample Site 48 (T133N, R103W, Section 28, SE/NW/NW). See Figure 10 for location map and Figure 34 legend for lithology.

Figure 42. Photograph and measured section of Sample Site 49 (T133N, R103W, Section 16, NW/SW/ SW). See Figure 10 for location map and Figure 34 legend for lithology.

Figure 43. Photograph, measured section, and alumina profile for Sample Site 56 (T133N, R103W, Section 12, NE/SE/SW). See Figure 10 for location map and Figure 34 legend for lithology.

2,890-

Figure 45. Photograph and measured section of Sample Site 55 (T130N, R101W, Section 4, NE/NW/NE). See Figure 10 for location map and Figure 34 legend for lithology.

2,890-

Figure 46. Photograph and measured section of Sample Site 54 (T130N, R101W, Section 11, SW/NW/ NW). See Figure 10 for location map and Figure 34 legend for lithology.

Figure 47. Photograph and measured section of Sample Site 53 (T131N, R99W, Section 34, SE/SW/SE). See Figure 10 for location map and Figure 34 legend for lithology.

Rhame Bed – Mott

Thirteen Rhame Bed sample sites fall within the Mott 100K map sheet (Figures 10, 48-61). This area contains the most densely spaced sample sites of any area, with nine sites all occurring within a six-mile-radius in central Adams County. Five of these sites are in road cuts and the others occur along the tops or sides of small, isolated buttes.

Partial exposures of the Rhame Bed are 10-20 feet thick in this area. The Rhame Bed averages 17 feet thick at the only two sites (sites 18 and 34) where the basal contact is exposed. The color on outcrop in this area tends to be subdued in comparison to the dazzling white outcrops along Deep Creek in Slope County. Organics are also more plentiful (carbonaceous mudstones) in this area than in the Bowman area. The weighted alumina content of sites within this study area ranged from 16-25% with an average of 20%. Sites 36 and 37 (Figures 51 and 52) are in an area where the silcrete layer forms a relatively level plateau and the Rhame Bed could be mined with little or no overburden. The section northwest of sample site 44 (Figure 60) also appears to be an area with relatively thin overburden.

Sample site 52 is a good example of how difficult it can be to identify either the Rhame Bed or the Bear Den Member in a limited outcrop when silcrete is absent (Figure 49). The dull white to light pink mudstone is the right color, has the right surface texture, and is greasy to the touch. However, it occurs approximately 300 feet higher in elevation than the adjacent Rhame Bed sites. As a result, it was identified in the field as the Rhame Bed with a question mark. For that reason, it was not analyzed and its elevation was not used to construct a contour map at the top of the Rhame Bed (Murphy, 2012).

Figure 48. Geologic cross-section of selected sample sites in Adams and southeastern Hettinger counties. See Figure 10 for location map.

Figure 49. Photograph and measured section of Sample Site 52 (T130N, R97W, Section 29, NW/NE/NW). See Figure 10 for location map and Figure 48 legend for lithology.

Figure 50. Photograph, measured section, and alumina profile for Sample Site 51 (T129N, R96W, Section 1, NE/NE). See Figure 10 for location map and Figure 48 legend for lithology.

Figure 51. Photograph and measured section of Sample Site 37 (T130N, R95W, Section 21, SW/NE/SE). See Figure 10 for location map and Figure 48 legend for lithology.

Figure 52. Photograph and measured section of Sample Site 36 (T130N, R95W, Section 21, SW/NE/SE). See Figure 10 for location map and Figure 48 legend for lithology.

Figure 53. Photograph, measured section, and alumina profile for Sample Site 41 (T130N, R94W, Section 7, SW/NW/NW). See Figure 10 for location map and Figure 48 legend for lithology.

Figure 54. Photograph, measured section, and alumina profile for Sample Site 38 (T130N, R95W, Section 1, NW/NW/SW). See Figure 10 for location map and Figure 48 legend for lithology.

Figure 56. Photograph and measured section of Sample Site 40 (T130N, R95W, Section 1, NW/NE/SW). See Figure 10 for location map and Figure 48 legend for lithology.

Figure 57. Photograph, measured section, and alumina profile for Sample Site 35 (T131N, R95W, Section 22, SE/SW/SE). See Figure 10 for location map and Figure 48 legend for lithology.

Figure 58. Photograph and measured section of Sample Site 33 (T130N, R94W, Section 11, NE/NW/NW). See Figure 10 for location map and Figure 48 legend for lithology.

Figure 59. Photograph, measured section, and alumina profile for Sample Site 34 (T130N, R94W, Section 1, SW/SW/NW). See Figure 10 for location map and Figure 48 legend for lithology.

Figure 60. Photograph, measured section, and alumina profile for Sample Site 44 (T130N, R92W, Section 9, NW/NW/NW). See Figure 10 for location map and Figure 48 legend for lithology.

Figure 61. Photograph, measured section, and alumina profile for Sample Site 45 (T132N, R91W, Section 22, SE/SW/SW). See Figure 10 for location map and Figure 48 legend for lithology.

Rhame Bed – Elgin

The Elgin Area contains 12 Rhame Bed sample sites. Six sites occur within the Elgin 100K map sheet and six occur within the adjacent Glen Ullin sheet (Figures 10, 62-76). In addition, there are two Bear Den Member sample sites at the top of Pretty Rock Butte in Grant County. These Bear Den outcrops are of interest because they are the furthest southeast occurrences of this stratigraphic unit. Many of the Rhame Bed sample sites in this area occur along road cuts. Site 1 is the furthest northeast exposure of the Rhame Bed encountered during this project (Figure 76). The sample sites follow a southwest-northeast trend that roughly parallels the Rhame Bed outcrop pattern in this part of the state.

The basal contact of the Rhame Bed is exposed at only 3 of 12 study sites in this area. At those three sites the Rhame Bed has an average thickness of 19 feet. The Rhame Bed tends to be more brightly colored with more distinctive layering in central Grant County and southern Morton County than in other areas, but that might be a misperception created by better developed outcrops. The weighted alumina content for the Rhame Bed in this area ranges from 13-20% with an average alumna content of 17%.

The alumina content of a Bear Den Member outcrop at the top of Pretty Rock Butte (Site 43) ranged from 16 to 26% with an average weighted alumina value of 20% (Figure 63). In addition to being the furthest southeast exposure of the Bear Den Member in North Dakota, this is also the only locality where we have the Bear Den and the Rhame Bed in close proximity. The Rhame Bed (Site 28) occurs 300 feet below the Bear Den Member (Site 43) approximately three miles northeast of Pretty Rock Butte (Figure 10). Ignoring regional dip, this implies the Sentinel Butte and Bullion Creek Formations are only 300 feet thick in this area. The limited Bear Den outcrops on Pretty Rock Butte appear to be flat lying, but there are silcrete blocks present as float 50 feet above the dazzling white mudstones at Site 42 (Figure 64). In the absence of multiple Bear Den or post-Bear Den silcretes, this suggests Bear Den strata has been let down in this area.

Figure 62. Geologic cross-section of selected sample sites in Grant and Morton counties. See Figure 10 for location map.

Figure 63. Photograph, measured section, and alumina profile for Sample Site 43 (T131N, R89W, Section 33, NE/NE/NE). See Figure 10 for location map and Figure 62 legend for lithology.

Figure 64. Photograph and measured section of Sample Site 42 (T131N, R89W, Section 34, NW/NE/NW). See Figure 10 for location map and Figure 62 legend for lithology.

Figure 65. Photograph, measured section, and alumina profile for Sample Site 28 (T131N, R89W, Section 13, NW/SW/SW). See Figure 10 for location map and Figure 62 legend for lithology.

Figure 66. Photograph and measured section of Sample Site 27 (T132N, R89W, Section 22, NE/NE/SE). See Figure 10 for location map and Figure 62 legend for lithology.

Figure 68. Photograph and measured section of Sample Site 25 (T133N, R89W, Section 35, NW/SE/NW). See Figure 10 for location map and Figure 62 legend for lithology.

Figure 69. Photograph, measured section, and alumina profile for Sample Site 29 (T134N, R89W, Section 34, SE/SW/NE). See Figure 10 for location map and Figure 62 legend for lithology.

Figure 70. Photograph and measured section of Sample Site 60 (T134N, R87W, Section 11, NW/SW/SW). See Figure 10 for location map and Figure 62 legend for lithology.

Figure 71. Photograph, measured section, and alumina profile for Sample Site 61 (T136N, R87W, Section 16, NW/NW/NE). See Figure 10 for location map and Figure 62 legend for lithology.

Figure 72. Photograph, measured section, and alumina profile for Sample Site 59 (T137N, R86W, Section 35, SW/SE/SE). See Figure 10 for location map and Figure 62 legend for lithology.

Figure 73. Photograph and measured section of Sample Site 57 (T137N, R86W, Section 25, SE/NW/NE). See Figure 10 for location map and Figure 62 legend for lithology.

2,040-

Figure 74. Photograph and measured section of Sample Site 58 (T137N, R86W, Section 4, SW/NW/SW). See Figure 10 for location map and Figure 62 legend for lithology.

Figure 75. Photograph and measured section of Sample Site 2 (T137N, R84W, Section 17, NW/NW/NW). See Figure 10 for location map and Figure 62 legend for lithology.

Figure 76. Photograph and measured section of Sample Site 1 (T139N, R83W, Section 10, SW/SE). See Figure 10 for location map and Figure 62 legend for lithology.

CLAY MINERALOGY

The XRD results indicate the dominant clay minerals in these samples are kaolinite, illite, chlorite, and smectite. These findings are very much in line with the results of previous clay studies of these rock units. The dominant nonclay minerals are quartz, feldspar, anatase, goethite, and dolomite. The presence of anatase is consistent with titantium oxide concentrations of up to 2.8% in samples as determined by XRF analysis. The lab was not able to quantify clay mineralogy using peak heights, but instead interpreted them to determine relative abundance. This was accomplished by profile fitting to distinguish between overlapping peaks, drawing a horizontal line at the midpoint of the maximum peak height, and designating the area below that horizontal line as the "peak area." The resulting peak area was presented as abundance trends in a series of graphs (Appendix D). As with the alumina and silica concentrations, clay mineralogy was plotted in vertical profiles rather than absolute values, as in the case of the XRF profiles, it is understandably more difficult to identify consistent patterns in regards to clay mineralogy.

Several of the clay mineralogy abundance trends do not appear to fit well with the alumina trends or what is known of the general clay mineralogy of these units. However, the clay abundance trends for site 22 do, in general, fit the anticipated trend (Figures 13 and 77). Kaolinite appears to be relatively high throughout the Bear Den Member profile and smectite increases in the lower stratigraphic samples as would be expected. The highest smectite trend occurs in sample 22F (black claystone). As previously noted, this black Bear Den Member claystone can be traced through northeastern Dunn County and into northwestern Mercer County (samples 18D, 19D, and 22F). All three samples contained not only some of the highest diffraction peaks for kaolinite, but also the highest for smectite. In the field these samples were uniquely waxy in appearance with a much different texture than the surrounding rocks. These black claystones may well be a smectite layer that was partially converted to kaolinite by intense weathering. At all three sites, the alumina content increased in this layer in comparison to the adjacent beds.

At Site 4, the alumina values remained relatively constant, decreasing slightly with distance from the top of the Bear Den Member (Figure 27). The clay mineralogy trends also remained relatively constant for both kaolinite and smectite. Kaolinite did decrease slightly between samples 4A and 4B (Appendix D).

The clay mineralogy abundance trend for Site 41 displays an interesting pattern. While the alumina trend for this site decreases stratigraphically down through the Rhame Bed, the kaolinite content is lowest and the smectite content is highest in sample 41A. Sample 41A is a very carbonaceous claystone that underlies the silcrete and there was no indication that this was a swelling clay.

The clay mineralogy trends for Site 56 also do not fit the anticipated pattern (Figure 78). The higher kaolinite content appears to occur in claystones and mudstones near the base of the Bullion Creek Formation and not in the upper Rhame Bed. In addition, the smectite concentrations appear relatively stable across this stratigraphic interval. Lateral sampling at this locality, as well as throughout the study, would determine if any of these are localized effects.

Though other factors may be significant, phase abundance is one of the primary contributions to diffraction peak intensity. A comparison of peak intensity between Rhame Bed and Bear Den samples reveals some interesting groupings (Figure 79). Of the 23 peak intensities noted on the graph for kaolinite, 17 are from the Bear Den Member (4A, 4B, 4C, 15J, 18A, 18B, 18C, 18D, 18E, 19D, 19E, 19F, 22A, 22B, 22D, 22E, and 22F) and only one is from the Rhame Bed (29B). The other five kaolinite intensity peaks are attributable to the Sentinel Butte Formation (19G), the Bullion Creek Formation (56C and 56D), and the Slope Formation (29E and 29F). The majority of swelling clay peak intensities (80%) also came from Bear Den samples (15E, 15J, 18D, 19F, 19D, 22D, 22E, and 22F). Only two Rhame Bed samples (28E and 56F) were in this group (Figure 79). However, three of the Bear Den samples were from a black claystone that was identified in the field as an altered bentonite.

Series 22 Abundance Trends (Normalized)

Figure 77. Clay mineralogy abundance trends for Site 22 (Grier and Jarabek, 2013).

Series 56 Abundance Trends (Normalized)

Figure 78. Clay mineralogy abundance trends for Site 56 (Grier and Jarabek, 2013).

Figure 79. Basal spacings of the air-dried oriented mount clay specimens (Grier and Jarabek, 2013). The specimens producing the highest diffraction peaks for each clay type are noted.

Additional Clay Analyses

Plotting the clay mineralogy abundance trends was somewhat of a novel approach and those trends do not appear to closely follow the alumina values for a given sample site. In an effort to generate additional information on the relationship between alumina and kaolinite at these sites, eight clay samples (18A-18D and 29A, B, D, F) were submitted to the Energy and Environmental Research Center at the University of North Dakota (EERC). These sample sites were chosen because Site 18 is in the Bear Den Member and the alumina content decreases with depth while site 29 is in the Rhame Bed and the alumina content increases with depth.

The EERC performed XRD analysis on the clay samples to determine clay mineralogy. In order for EERC to obtain semi-quantitative data on the clays: 1) bulk XRD analysis was run on the samples before the clays were separated and additional XRD analyses were run on the clay portion and 2) the smectite content was determined using methylene blue. The quartz content was determined by XRD methods using a reference intensity ratio method (RIR) which is considered semi-quantitative. Full profile refinements (Reitveld Refinements) were not done since the structure of the clays cannot be modeled for smectites and mix-layered clays. Peaks were identified in the diffractogram for all mineral phases. The reference intensity ratio was used for each of the identified minerals listed by the International Center for Diffraction Data (ICDD). The RIR number for each mineral is the ratio of the peak intensity (height) for the mineral of interest to the peak intensity of corundum (Al₂O₃). This method relies on a single peak for each mineral. Preferred orientation of a mineral can affect the peak height (Eylands, 2013).

The smectite content was determined using a methylene blue titration method (Fityus et al., 2000) in which methylene blue is added to a constantly stirred sample. The amount of smectite can be determined by how much methylene blue is absorbed by the clay minerals. A small but known amount of methylene blue is added to a small amount of sample and the color is noted. If there is no color change, then more methylene blue is added and the color is noted. The process is repeated until the color change occurs. In the case of little or no smectite, the color will turn blue immediately, in which case more clay sample is added. Fityus and others (2000) provide a chart relating milligrams of methylene blue added to the amount of smectite present, which was used as the results for the amount of smectite found in each of the samples. The process was repeated three times for each sample to ensure consistency (Eylands, 2013).

Using these procedures EERC determined the Bear Den samples averaged 33% quartz, 27% illite, 23% kaolinite, 10% smectite, and 7% other minerals; the Rhame Bed samples averaged 47% quartz, 22% illite, 19% kaolinite, 9% smectite, and 3% other minerals; and the one Slope Formation sample contained 32% quartz, 21% illite, 19% kaolinite, 8% smectite, and 20% other minerals (Table 3). The high percentage of other minerals in the Slope Formation sample was due to potassium feldspar.

These XRD results for both sites were plotted vertically and compared to the alumina results (Figure 80). Surprisingly, the smectite and smectite/quartz profiles appear to fit the alumina profile best for Sample Site 18 and the illite and smectite trend lines best parallel the alumina trend line. Understandably, the Site 18 quartz profile is a mirror image of the alumina profile i.e.,

Sample	Alumina	Kaolinite	Illite	Smectite	Quartz	Other	Kaolinite/	Smectite/
	%	%	%	%	%	%	Quartz	Quartz
18A	27.4	22.5	27	11.5	30.6	8.4	0.735294118	0.375816993
18B	24.0	26	29.1	10.6	34.3	0	0.758017493	0.309037901
18C	20.4	19.7	23.3	7.8	36.6	12.6	0.538251366	0.213114754
18D	25.2	25.2	26.8	11.2	29.8	7	0.845637584	0.375838926
29A	7.3	17.2	19.3	8.6	53.8	1.1	0.319702602	0.159851301
29B	15.3	16.7	23.8	5.7	50.3	3.5	0.332007952	0.11332008
29D	23.0	21.9	24.4	13.3	36.1	4.3	0.606648199	0.368421053
29F	20.4	18.8	21.2	7.7	32.4	19.9	0.580246914	0.237654321

Table 3. Alumina, clay mineralogy, and quartz concentrations for sample sites 18 and 29 (modified from Eylands and Mibeck, 2013).

as quartz increases alumina decreases and vice versa (Figure 80). There are no good fits for the alumina profile for Site 29. If the kaolinite content of 29A was lower, the kaolinite profile would be a good fit for alumina at this site. The mirror image of the quartz profile probably comes closest and would be a good fit if the quartz content in 29F was slightly higher. The quartz trend line is opposite the alumina trend line at this site. The alumina/quartz and smectite/quartz trend lines parallel that of alumina at site 29.

CONCLUSIONS

The alumina concentrations in the Bear Den Member ranged from 7-34% in individual samples and from 16-25% in mean weighted values. The alumina concentrations in the Rhame Bed ranged from 6-27% in individual samples and from 13-25% in mean weighted values. Alumina concentrations in these beds appear to be relatively evenly spaced across Hettinger, Stark, Dunn, Mercer, and Morton counties. The highest concentrations in the Rhame Bed occur in central Adams County and the highest concentrations in the Bear Den Member occur in northeastern Dunn and northwestern Mercer counties. However, additional sampling may reveal patterns that were not discernible at this sampling density. Also, this study did not attempt to determine lateral variability in alumina within a given outcrop because that would have required collecting significantly more samples or reducing the areal extent of the sampling program to concentrate in a more localized area.

It was assumed in the field that the whitest, cleanest claystones would contain the most alumina. That is, the most highly weathered or bleached claystones would have the highest percentage of clay minerals that had been converted to kaolinite and therefore the highest percentage of alumina. As it turned out, outcrop appearance was not an accurate means of predicting alumina content. That may well be a result of fluctuating silt content. Claystones that appeared to be clean under routine field examination may well be silty claystones where the increase in silica content effectively reduces the alumina content. In addition, the clay mineralogy may be more complex than had previously been thought.

Figure 80. A comparison of the alumina profiles and trend lines to the clay mineralogy and quartz profiles for Sample Sites 18 and 29.

Some previous studies had hypothesized that the percentage of kaolinite would be highest at the top of the bed, would systematically decrease to the base of the bed, and alumina values would follow the same trend. A handful of analyses collected along stratigraphic profiles from these previous works seemed to support this hypothesis. However, this study found alumina was more than twice as likely to increase along a stratigraphic profile of the Bear Den or the Rhame Bed than it was to decrease. As a result, no benefit would be gained by preferentially mining just the tops of these beds for alumina.

Where exposed, it is often relatively difficult to pick the basal contact of the Bear Den Member or the Rhame Bed in outcrop. While the upper contact is generally sharp and clear, the basal contact is often gradational, reflecting the waning edges of the weathering horizon. In some cases, the basal contact chosen in the field was later shifted up or down one bed to coincide with the decrease in alumina (in anticipation that it was reflecting a similar decrease in kaolinite). However, the XRD results did not consistently show a decrease in kaolinite at these same horizons. For example, the clay mineralogy abundance trends for Site 29 demonstrate increasing kaolinite content in samples 29A-29D, coinciding with increasing alumina content through that same interval. Unfortunately for this line of reasoning, the kaolinite trend of sample 29E appears to be increasing when it should be decreasing. The increasing smectite trend for sample 29F along with a slight decrease in kaolinite content suggests the basal contact of the Rhame Bed should be shifted between 29E and 29F (rather than 29D and 29E). However, there were no field observations that would support that shift.

Almost four times as many samples were collected as initially budgeted. Since alumina was the focus of the study, it was determined that it was best to spend the majority of money on XRF analysis and spend whatever money was left over on XRD analysis. It was assumed that variations in the alumina content within the Bear Den Member and the Rhame Bed could be directly attributable to fluctuations in the percentage of kaolinite. However, without knowledge of the fluctuating silt content it was difficult to interpret the initial XRD profiles. In addition to XRD analysis of the clay fraction, the EERC results demonstrate that future studies should run bulk XRD analysis and methylene blue titration or any additional methods that will help to determine, on a quanitiative or semi-quantitative basis, the clay minerals that are present in these stratigraphic units.

REFERENCES

- Anderson, F.J., 2011, Investigation of sand resources in ND: sedimentological characterization of surficial sand deposits for potential use as proppant: North Dakota Geological Survey Report of Investigation No.110, 77 p.
- Brekke, D.W., 1979, Mineralogy and chemistry of clay-rich sediments in the contact zone of the Bullion Creek and Sentinel Butte Formations (Paleocene), Billings County, North Dakota, Master's Thesis, University of North Dakota, 94 p.
- Chew, R.T. III, 1961, Reconnaissance study of clays in Dunn and Mercer counties, North Dakota, as a possible source of alumina: Northern Pacific Railway Co., Commodity Report, 6 p.
- Chew, R.T. III, and Boyd, G.A., 1960, A preliminary investigation of clay deposits in Minnesota, North Dakota, Montana, Northern Idaho, and Washington: Northern Pacific Railway Company, Properties and Industrial Development Department, 161 p.

- Clapp, C.H., and Babcock E.J., 1906, Economic geology of North Dakota clays: in the Fourth Biennial Report of the North Dakota Geological Survey, p. 95-190.
- Clarke, F.F., 1948, Southwestern North Dakota clay deposits Stark, Slope, and Billings counties, N.Dak.: U.S. Bureau of Mines Report of Investigations 4219, 32 p.
- Emanuel, R., Jacob, A.F., and Karner, F.R., 1976, Mineralogy of the clay-size fraction of the Paleocene Tongue River and Sentinel Butte Formations near Medora, North Dakota: in Proceedings of the North Dakota Academy of Science, Vol 28, Pt 2, pp. 25-28.
- Eylands, K.E., 2013, personal communication, Energy and Environmental Research Center, October 2.
- Eylands, K.E. and Mibeck, B.F., 2013, Reporting XRD SQA Mibeck 2013-9-10: Energy and Environmental Research Center, Excel spreadsheet.
- Fityus, S.G., Smith, D.W., and Jennar, A.M., 2000, Surface area using methylene blue adsorption as a measure of soil expansivity: International Conference on Geotechnical and Geological Engineering, GeoEng, pp. 601-604.
- Freas, D.H., 1959, Occurrence, mineralogy, and origin of the lower Golden Valley kaolinitic clay deposits near Dickinson, North Dakota: Unpublished PhD thesis, University of Wisconsin, Madison, 60 p.
- Freas, D.H., 1962, Occurrence, mineralogy, and origin of the lower Golden Valley kaolinitic clay deposits near Dickinson, North Dakota: Geological Society of America Bulletin, v. 73, pp. 1341-1364.
- Great Northern Railway Company, 1958, Williston Basin Clays: Mineral Research and Development Department, 23 p.
- Grier, D. and Jarabek, E., 2013, Clay mineralogy by x-ray diffraction: Report submitted to the North Dakota Geological Survey by the Center for Nanoscale Science & Engineering, North Dakota State University, 65 p.
- Hansen, M., 1959, Clays of North Dakota as a potential source of alumina: North Dakota Geological Survey Report of Investigation no. 33, 15 p.
- Hickey, L.J., 1977, Stratigraphy and paleobotany of the Golden Valley Formation (Early Tertiary) of western North Dakota: Geological Society of America Memoir 150, 183 p, 55 pl.
- Leonard, A.G., 1906, The stratigraphy of North Dakota clays: in the Fourth Biennial Report of the North Dakota Geological Survey, p. 63-94.
- Murphy, E.C., Hoganson, J.W., and Forsman, N.F., 1993, The Chadron, Brule, and Arikaree Formations in North Dakota: North Dakota Geological Survey Report of Investigation no. 96, 144 p.
- Murphy, E.C., 1995, North Dakota clays, a historical review of clay utilization in North Dakota: North Dakota Geological Survey Miscellaneous Series no. 79, 18 p.
- Murphy, E.C., 2009, The Golden Valley Formation: Geo News, North Dakota Department of Mineral Resources, vol. 36, no. 2, p. 1-4.
- Murphy, E.C., Nordeng, S.H., Juenker, B.J., and Hoganson, J.W., 2009, North Dakota Stratigraphic Column: North Dakota Geological Survey Miscellaneous Series 91.
- Murphy, E.C., 2012, Alumina content of the Bear Den Member and the Rhame Bed in North Dakota: North Dakota Geological Survey Geological Investigations no. 158.
- Murphy, E.C., 2013a, Alumina content of Paleocene claystones, Belfield 100K sheet, ND: North Dakota Geological Survey 100K Map Series Blfd al.

Murphy, E.C., 2013b, Alumina content of Paleocene claystones, Bowman 100K sheet, ND: North Dakota Geological Survey 100K Map Series Bwmn – al.

- Murphy, E.C., 2013c, Alumina content of Paleocene claystones, Dickinson 100K sheet, ND: North Dakota Geological Survey 100K Map Series Dckn al.
- Murphy, E.C., 2013d, Alumina content of Paleocene claystones, Elgin 100K sheet, ND: North Dakota Geological Survey 100K Map Series Elgn al.
- Murphy, E.C., 2013e, Alumina content of Paleocene claystones, Glen Ullin 100K sheet, ND: North Dakota Geological Survey 100K Map Series GUln – al.
- Murphy, E.C., 2013f, Alumina content of Paleocene claystones, Grassy Butte 100K sheet, ND: North Dakota Geological Survey 100K Map Series GyBt – al.
- Murphy, E.C., 2013g, Alumina content of Paleocene claystones, Killdeer 100K sheet, ND: North Dakota Geological Survey 100K Map Series Kldr al.
- Murphy, E.C., 2013h, Alumina content of Paleocene claystones, Mott 100K sheet, ND: North Dakota Geological Survey 100K Map Series Mott al
- Murphy, E.C., 2013i, Alumina Content of Paleocene Claystones, Golden Valley Quadrangle, ND: North Dakota Geological Survey 24K:GldV-al.
- Murphy, E.C., 2013j, Alumina Content of Paleocene Claystones, Golden Valley NE Quadrangle, ND: North Dakota Geological Survey 24K:GldV NE-al.
- Murphy, E.C., 2013k, Alumina Content of Paleocene Claystones, Golden Valley NW Quadrangle, ND: North Dakota Geological Survey 24K:GldV NW-al.
- Murphy, E.C., 2013l, Alumina Content of Paleocene Claystones, Halliday NW Quadrangle, ND: North Dakota Geological Survey 24K:Hldy NW-al.
- Murphy, E.C., 2013m, Alumina Content of Paleocene Claystones, Hirschville SW Quadrangle, ND: North Dakota Geological Survey 24K:Hrvl SW-al.
- Murphy, E.C., 2013n, Alumina Content of Paleocene Claystones, Marshall Quadrangle, ND: North Dakota Geological Survey 24K:Mrsl-al.
- Murphy, E.C., 2013o, Alumina Content of Paleocene Claystones, New Hradec North Quadrangle, ND: North Dakota Geological Survey 24K:NwHr N-al.
- Murphy, E.C., 2013p, Alumina Content of Paleocene Claystones, Schaffner Creek Quadrangle, ND: North Dakota Geological Survey 24K:SfnC-al.
- Prichard, G.H., 1980, Authigenic kaolinite in the Bear Den Member (Paleocene) of the Golden Valley Formation, in southwestern North Dakota: unpublished Master's Thesis, University of North Dakota, 174 p.
- Sigsby, R.J., 1966, "Scoria" of North Dakota: PhD Dissertation, University of North Dakota, 218 p.
- Wehrfritz, B.D., 1978, The Rhame Bed (Slope Formation, Paleocene), a silcrete and deepweathering profile, in southwestern North Dakota: unpublished Master's Thesis, University of North Dakota, 158 p.

Appendix A

Sample Locations

Slone																																			
ame Bed	1		2																						2		2								2
n Creek Rh					F				t																				F						
Bullion																																			
Sentinel Butte	5																																		
Bear Den					2			m	Ч								∞			ε	-		2												
Camels Butte																																			
XRD Analvsis																																			
XRF Analvsis	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×				×	×	×	×		×	×	×	×			×
Ft Below Top of BDM or RB	3	m	14	ŝ	9	m	∞	15	m	1	2	c	4.5	9	7.5	6	10	1	9	12	2	2	9	2	4	2	7	2	2	∞	11	13	17	21	0
Lithologic Description	gry/wht sndy mdst	gry/wht clyst	gry/wht clyst	wht/orng clyst	wht/orng clyst	wht/orng sndy clyst	wht/orng sndy clyst	wht/orng sndy clyst	wht mdst, FeO	brt wht clyst	brt wht slst	brt wht slst	purp clyst	wht clyst	gold clyst	wht sndy mdst	brt wht clyst	gold clyst	wht clyst	gry/wht clyst, FeO	brt wht clyst	purp/wht clyst	brt wht clyst	brn clyst	popcorn tex clyst	wht clyst	wht clyst	gry/wht slst, FeO	gry/wht slst, FeO	purp slst, silcrete					
Sample	1A	2A	2B	3A	38	4A	4B	4C	5A	6A	68	90	6D	6E	6F	99	H9	ΤA	7B	7C	8A	9A	98	10A	10B	11A	11B	12A	13A	13B	13C	13D	13E	13F	13G
Stratigraphic	Rhame Bed	Rhame Bed	Rhame Bed	3ear Den Mbr	3ear Den Mbr	3ear Den Mbr	3ear Den Mbr	3ear Den Mbr	3ear Den Mbr	3ear Den Mbr	3ear Den Mbr	3ear Den Mbr	3ear Den Mbr	3ear Den Mbr	3ear Den Mbr	3ear Den Mbr	3ear Den Mbr	3ear Den Mbr	3ear Den Mbr	3ear Den Mbr	3ear Den Mbr	3ear Den Mbr	3ear Den Mbr	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed
Elevation Jutcron Ton	2,020	2,100				2,510 F			2,517 E	2,500								2,420 E			2,537 E	2,530		3,200		2,950		2,820	2,640						
C	sw/se	wu/wu/wu	wu/wu/wu	nw/nw/se	nw/nw/se	se/sw/sw	se/sw/sw	se/sw/sw	se/se/se	wu/wu/wu	wu/wu/wu	wu/wu/wu	wu/wu/wu	wu/wu/wu	wu/wu/wu	wu/wu/wu	wu/wu/wu	wu/wu/wu	wu/wu/wu	wu/wu/wu	ne/nw/nw	ne/ne/se	ne/ne/se	wu/wu/ws	wu/wu/ws	se/se/ne	se/se/ne	ne/se/sw	nw/ne/ne	nw/ne/ne	nw/ne/ne	nw/ne/ne	nw/ne/ne	nw/ne/ne	nw/ne/ne
Sect	10	17	17	4	4	21	21	21	m	4	4	4	4	4	4	4	4	25	25	25	-	36	36	/ 28	/ 28	13	/ 13	/ 11	5	5	2	5	2	2	S
Townshin	1139N, R83W	¹ 137N, R84W	r137N, R84W	T140N, R88W	T140N, R88W	T139N, R93W	T139N, R93W	T139N, R93W	T140N, R93W	T139N, R94W	r139N, R94W	r139N, R94W	1139N, R94W	r139N, R94W	F139N, R94W	r139N, R94W	F139N, R94W	F141N, R95W	F141N, R95W	F141N, R95W	F138N, R97W	r139N, R97W	F139N, R97W	136N, R106V	136N, R106V	136N, R106V	136N, R106V	136N, R105V	136N, R104V	136N, R104V	136N, R104V	136N, R104V	136N, R104V	136N, R104V	136N, R104V
SAMPLES	Site 1 1	Site 2 1	Site 2	Site 3 1	Site 3 1	Site 4 1	Site 4	Site 4	Site 5	Site 6	Site 6	Site 6	Site 7	Site 7	Site 7	Site 8	Site 9	Site 9	Site 10 T	Site 10 T	Site 11 T	Site 11 T	Site 12 T	Site 13 T	Site 13 T	Site 13 T	Site 13 T	Site 13 T	Site 13 T	Site 13 T					

Close	adoic																																			
bod omoda			2																																	
Pullion Crock																																				
Sentinel	Dulle																												2							
														11	-		2					ъ							ъ			e.				
Camels	Dulle																																			
XRD	sisyibiik																																			
XRF	Alidiyai	×	×	×	×	×	×	×	×	×	×	×	×	×		×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
Ft Below Top of PDM of PD		2	∞	-	2	m	4	8	6	10	11	12	13	14	10	c	9	2	9	10	12	16	e,	7	6	11	14	18	22	2	9	11	6 (above)	5 (above)	-	5
lithologic Deceriation	רונווסוספור הבאניושנוסנו	gry/wht mdst	brt wht clyst	gry/wht clyst, FeO	brt wht clyst, FeO	wht mdst	wht mdst	gry/wht clyst	gry/wht clyst, FeO	wht clyst	gry clyst, gyp stringers	gry/wht/gold clyst, FeO	gry/wht/gold clyst, FeO	gry/wht/gold clyst, FeO	brt wht, clyst, FeO	gry clyst	gry/wht/orng clyst, FeO	gry clyst	gry clyst	ort wht clyst-mudst, FeO	ort wht clyst-mudst, FeO	ort wht clyst-mudst, FeO	brn clyst, carb	brn clyst, carb	gry/wht clyst, FeO, gyp	gry/wht clyst, FeO, gyp										
olamo	aiduipe	14A	14B	15A	15B	15C	15D	15E	15F	15G	15H	151	15J	15K	16A	17A	17B	18A	18B	18C	18D	18E	19A	198	19C	19D	19E	19F	19G	20A k	20B k	20C	21A	21B	21C	21D
Stratigraphic	OIIIC	Rhame Bed	Rhame Bed	Bear Den Mbr	Bear Den Mbr	Bear Den Mbr	Bear Den Mbr	Bear Den Mbr	Bear Den Mbr	Bear Den Mbr	Bear Den Mbr	Bear Den Mbr	Bear Den Mbr	Bear Den Mbr	Bear Den Mbr	Bear Den Mbr	Sentinel Butte	Sentinel Butte	Bear Den Mbr	Bear Den Mbr	Bear Den Mbr	Camels Butte Mhr	Camels Butte	Bear Den Mbr	Bear Den Mbr											
Elevation		3,060		2,340											2,607	2,060		2,160					2,240							2,250			2,180			
		se/nw/nw	se/nw/nw	ws/ws/wu	se/sw/se	ne/nw/ne	ne/nw/ne	ne/sw/se	ne/sw/se	ne/sw/se	ne/sw/se	ne/sw/se	ne/ne/sw	ne/ne/sw	ne/ne/sw	ne/ne/sw	ne/ne/sw	ne/ne/sw	ne/ne/sw	ne/se/sw	ne/se/sw	ne/se/sw	wu/ws/wu	wu/sw/wu	wu/ws/wu	wu/ws/wu										
chin Coo	nac dinsi	R105W 15	R105W 15	R90W 4	R95W 33	R90W 15	R90W 18	.R91W 12	R91W 12	R91W 12	. R91W 12	.R91W 12	R90W 11	R90W 11	R90W 11	R90W 11	R90W 11	R90W 11	R90W 11	R92W 21	R92W 21	R92W 21	.R91W 36	.R91W 36	R91W 36	R91W 36										
ES	IMOI	4 T137N,	4 T137N,	5 T140N,	6 T140N,	7 T144N,	7 T144N,	8 T145N,	8 T145N,	8 T145N,	8 T145N,	8 T145N,	9 T145N,	9 T145N,	9 T145N,	9 T145N,	9 T145N,	9 T145N,	9 T145N,	0 T143N,	0 T143N,	0 T143N,	1 T144N,	1 T144N,	1 T144N,	1 T144N,										
SAMPL		Site 1	Site 1	Site 1	Site 1	Site 1	Site 1	Site 1	Site 1	Site 1	Site 1	Site 1	Site 1	Site 1	Site 1	Site 1	Site 1	Site 1	Site 1	Site 1	Site 1	Site 1	Site 1	Site 1	Site 1	Site 1	Site 1	Site 1	Site 1	Site 2	Site 2	Site 2	Site 2	Site 2	Site 2	Site 2

Slope																																			
ame Bed																										-		2	1					ഹ	
Creek Rha									F				-				-												-						
Bullion (
entinel Butte																																			
s r Den			4						9							7	-								6				2						
s Bear																	-																		
Camel Butte			2																																
XRD Analysis																																			
XRF Analysis	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×		×	×		×	×	×	×	×	×
Ft Below Top of BDM or RB	11	15	26	1	4	œ	11	12	16	L	2.5	3.5	5	7	6	11	1	2.5	4	9	6	10	11	14	18	m	1	4	2	0.5	2	4	2	13	1
nologic Description	/wht clyst, FeO, gyp	/wht clyst, FeO, gyp	ry/wht clyst, FeO	brt wht clyst	brt wht clyst	ry/orng clyst, FeO	gry/dk gry clyst	gry clyst	brn/blk clyst, carb	gry clyst	dk gry clyst	el/orng clyst, FeO	el/orng clyst, FeO	rt wht mdst, sndy	rt wht mdst, sndy	y clyst, plant frags	gry clyst	gry clyst	brt wht clyst	wht/orng clyst	wht/orng clyst	gry/blk clyst, carb	gry clyst, gyp	gry clyst, gyp	ndst, silty, leaf fossils	gry clyst	//wht clyst to mdst	//wht clyst to mdst	wht to gry mdst, FeO	gry/wht mdst	gry/wht mdst	//wht mdst-ss, FeO	mdst, interbedded	yel/brn mdst, interbedded	gry/wht mdst
nple Litl	LE gry	LF gry	5	A	8	с С	D.	5E	PE dk	A	8	۲ ۲		3E b	SF b	5 Br	۲.	8	с С	Q	<u>щ</u>	tF dk	ŋ	Ŧ	41 tan r	A.	A gn	B gr	A brt v	RA BA	88	SC Bry	D gry	ЗЕ	A A
ic Sam	or 21	or 21	te 21	or 22	or 22	or 22	or 22	or 22	or 22	or 23	or 23	or 23	or 23	or 23	or 23	or 23	or 24	or 24	or 24	or 24	or 24	or 24	or 24	or 24	or 2/	1 25	1 26	1 26	1 27	1 28	1 28	1 28	1 28	1 28	1 29
Stratigraphi Unit	Bear Den Ml	Bear Den M	Sentinel But	Bear Den Ml	Bear Den Ml	Bear Den Ml	Bear Den Ml	Bear Den Ml	Bear Den Ml	Bear Den Ml	Bear Den Ml	Bear Den Ml	Bear Den MI	Bear Den Ml	Bear Den Ml	Bear Den Ml	Bear Den M	Bear Den Ml	Bear Den Ml	Bear Den Ml	Bear Den Ml	Bear Den Ml	Bear Den M	Bear Den Ml	Bear Den Ml	Rhame Bec	Rhame Bec	Rhame Bec	Rhame Bec	Rhame Bec	Rhame Bec	Rhame Bec	Rhame Bec	Rhame Bec	Rhame Bec
Elevation Dutcrop Top				2,360						2,620							2,710									2,380	2,410		2,460	2,500					2,340
5	wu/ws/wu	wu/ws/wu	wu/sw/nw	ne/nw/se	ne/nw/se	ne/nw/se	ne/nw/se	ne/nw/se	ne/nw/se	ne/ne/sw	ne/ne/sw	ne/ne/sw	ne/ne/sw	ne/ne/sw	ne/ne/sw	ne/ne/sw	nw/se/se	nw/se/se	nw/se/se	nw/se/se	nw/se/se	nw/se/se	nw/se/se	nw/se/se	nw/se/se	nw/se/nw	wu/wu/wu	wu/wu/wu	ne/ne/se	ws/ws/wu	ws/ws/wu	ws/ws/wu	ws/ws/wu	ws/ws/wu	se/sw/ne
Sect	V 36	V 36	V 36	V 20	V 20	V 20	V 20	V 20	V 20	V 29	V 29	V 29	V 29	V 29	V 29	V 29	V 16	V 16	V 16	V 16	V 16	V 16	V 16	V 16	V 16	V 35	۳ ۲	۳ ۲	V 22	V 13	V 13	V 13	V 13	V 13	V 34
Township	144N, R91V	r144N, R91 <u>V</u>	r144N, R91V	1146N, R92V	1146N, R92V	1146N, R92V	T146N, R92V	T146N, R92V	T146N, R92V	T142N, R96V	1142N, R96V	1142N, R96V	T142N, R96V	T142N, R96V	1142N, R96V	1142N, R96V	F145N, R97V	1145N, R97V	T145N, R97V	r145N, R97V	F145N, R97V	F145N, R97V	1145N, R97V	1145N, R97V	1145N, R97V	F133N, R89V	F132N, R89V	F132N, R89V	T132N, R89V	F131N, R89V	1131N, R89V	r131N, R89V	F131N, R89V	r131N, R89V	1134N, R89V
SAMPLES	Site 21 1	Site 21 T	Site 21 1	Site 22 1	Site 22 1	Site 22 1	Site 22 1	Site 22 1	Site 22 1	Site 23 1	Site 23 1	Site 23 7	Site 23 1	Site 23 1	Site 23 1	Site 23 7	Site 24 1	Site 24 1	Site 24 1	Site 24 1	Site 24 1	Site 24 1	Site 24 1	Site 24 7	Site 24 1	Site 25 1	Site 26 1	Site 26 1	Site 27 1	Site 28 1	Site 28 1	Site 28 1	Site 28 1	Site 28	Site 29 1

Slope																																		
hame Bed					9								œ						2									6					2	
Bullion Creek R																																		
Sentinel Butte																																		
Bear Den										2							4																	
Camels Butte																																		
XRD Analysis																																		
XRF Analysis	×	×	×	×	×	×	×	×	×	×				×	×	×	×			×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
Ft Below Top of BDM or RB	4	2	12	14	17	0.5	1	m	S	2	0.5	m	×	2	4	15	21	t.	2	2	m	4	9	2	9.5	11	14	16	1	4	ъ	∞	15	2
Lithologic Description	brt wht clyst	brt wht clyst	gry to gry/wht clyst	gry to dk gry/brn clyst, carb	gry to dk gry/brn clyst,	brt wht-gry mdst	brt wht-gry mdst	brt wht-gry mdst	brt wht-gry mdst, sandy, FaO	brt wht-gry mdst, sandy	brt wht, ss, FeO, cly filled	brt wht, ss, FeO, cly filled	brt wht, ss, FeO, cly filled	purp/gry clyst	wht/orng clyst, FeO	wht clyst	gry/wht slst, FeO	gry/wht mdst	gry/wht mdst	wht clyst	wht clyst	wht ss	wht clyst	gry/wht clyst, carb, plant	gry/wht clyst, carb, plant	wht/brn mdst, slty	wht/brn mdst, slty	gry clyst, carb	gry/wht clyst	gry/wht clyst	gry clyst, carb	gry/wht clyst	gry/wht clyst	gry/wht mdst
Sample	29B	29C	29D	29E	29F	30A	30B	30C	30D	30E	31A	318	31C	32A	32B	32C	32D	33A	33B	34A	34B	34C	34D	34E {	34F	34G	34H	341	35A	35B	35C	35D	35E	36A
Stratigraphic Unit	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Bear Den Mbr	Bear Den Mbr	Bear Den Mbr	Bear Den Mbr	Bear Den Mbr	Bear Den Mbr	Bear Den Mbr	Bear Den Mbr	Bear Den Mbr	Bear Den Mbr	Bear Den Mbr	Bear Den Mbr	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed
Elevation Outcrop Top						2,520					2,530			2,840				2,610		2,620									2,630					2,750
-	se/sw/ne	se/sw/ne	se/sw/ne	se/sw/ne	se/sw/ne	ne/se/nw	ne/se/nw	ne/se/nw	ne/se/nw	ne/se/nw	ne/nw/nw	ne/nw/nw	ne/nw/nw	se/se/ne	se/se/ne	se/se/ne	se/se/ne	ne/nw/nw	ne/nw/nw	wu/ws/ws	wu/ws/ws	wu/ws/ws	wu/ws/ws	mu/ms/ms	wu/ws/ws	wu/ws/ws	wu/ws/ws	mu/ms/ms	se/sw/se	se/sw/se	se/sw/se	se/sw/se	se/sw/se	sw/ne/se
Sect	V 34	V 34	V 34	V 34	V 34	V 16	V 16	V 16	V 16	V 16	V 21	V 21	V 21	V 11	V 11	V 11	V 11	V 11	V 11	7	× 1	5	1	7	2	1	1	7	V 22	V 22	V 22	N 22	V 22	V 21
Township	F134N, R89V	F134N, R89V	F134N, R89V	F134N, R89V	T134N, R89V	T138N, R96V	T138N, R96V	T138N, R96V	T138N, R96V	T138N, R96V	T138N, R96V	F138N, R96V	T138N, R96V	T136N, R97V	T136N, R97V	T136N, R97V	F136N, R97	F130N, R94V	T130N, R94V	T130N, R94V	T130N, R94 V	T130N, R94V	F130N, R94V	T130N, R94V	T130N, R94V	T130N, R94V	F130N, R94 V	T130N, R94V	T131N, R95V	T131N, R95V	T131N, R95V	F131N, R95V	F131N, R95V	T130N, R95V
SAMPLES	Site 29 1	Site 29 1	Site 29 1	Site 29	Site 29	Site 30	Site 30	Site 30	Site 30	Site 30	Site 31	Site 31	Site 31	Site 32 1	Site 32	Site 32	Site 32	Site 33	Site 33	Site 34	Site 34	Site 34	Site 34	Site 34	Site 34	Site 34	Site 34	Site 34	Site 35	Site 35	Site 35	Site 35	Site 35	Site 36

Slone																																				
Rhame Bed	2 2 1	۷			m				4		2		2				4														m			m		
Bullion Creek																																				
Sentinel Butte																																				
Bear Den																							9					S								
Camels Butte																																				
XRD Analvsis	and minut																																			
XRF Analvsis	X	< >	×	×		×	×	×	×					×	×		×							×	×	×	×	×	×	×	×	×	×	×	×	×
Ft Below Top of BDM or RB		- (c.	7	11	2	4	7	6	ε	ъ	1	7	2	9	15	25	1	2	S	10	14	18	2	4	9	∞	13	2	4	9	1	m	7	3 (above)	1
Lithologic Description	env/wht mdst	BI Y/ WILL IIIUSL	wht clyst	gry clyst	gry/wht clyst	wht clyst	wht clyst	gry clyst	gry ss, sltst	wht mdst	wht mdst	wht ss	wht clyst	dk brn/blk clyst, carb	gry/wht clyst	gry clyst	gry/wht mdst	brt wht mdst	mdst	mdst	mdst	slst	SS	yel/brn clyst	brt wht clyst	gry mdst, carb	gry mdst, carb	gry mdst-slst	gry wht clyst to mdst	wht clyst	gry clyst, some carb	gry clyst	gry wht clyst, FeO			
Sample	368		3/A	37B	37C	38A	38B	38C	38D	39A	39B	40A	40B	41A	41B	41C	41D	42A	42E	42F	42G	42H	421	43A	43B	43C	43D	43E	44A	44B	44C	45A	45B	45C	46A	46B
Stratigraphic Unit	Rhame Red		Khame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Bear Den Mbr	Bear Den Mbr	Bear Den Mbr	Bear Den Mbr	Bear Den Mbr	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Camels Butte	Bear Den Mbr						
Elevation Dutcron Ton			2,750			2,650				2,650		2,650		2,630				2,810						2,850					2,490			2,600			2,850	
	sw/ne/ce		sw/ne/se	sw/ne/se	sw/ne/se	ws/wu/wu	ws/wu/wu	ws/wu/wu	ws/wu/wu	nw/ne/sw	nw/ne/sw	nw/ne/sw	nw/ne/sw	wu/wu/ws	wu/wu/ws	wu/wu/ws	wu/wu/ws	nw/ne/nw	nw/ne/nw	nw/ne/nw	nw/ne/nw	nw/ne/nw	nw/ne/nw	ne/ne/ne	ne/ne/ne	ne/ne/ne	ne/ne/ne	ne/ne/ne	wu/wu/wu	wu/wu/wu	wu/wu/wu	se/sw/sw	se/sw/sw	se/sw/sw	nw/nw/se	nw/nw/se
Sect	1 21		V 21	V 21	V 21	H N		1	/ 1	1	1		1	~ /	~	~	~ /	V 34	V 33	/ 33	V 33	V 33	V 33	6 /	6	6	V 22	V 22	v 22	V 36	/ 36					
Township	F130N R95M	FLOOR POLIN	1 130N, K95V	T130N, R95V	T130N, R95V	T130N, R95V	T130N, R95V	T130N, R95V	T130N, R95V	T130N, R95V	T130N, R95V	T130N, R95V	T130N, R95V	T130N, R94V	T130N, R94V	T130N, R94V	T130N, R94V	T131N, R89V	T131N, R89V	T131N, R89V	T131N, R89V	T131N, R89V	T130N, R92V	T130N, R92V	T130N, R92V	T132N, R91V	T132N, R91V	T132N, R91V	T137N, R97V	T137N, R97W						
SAMPLES	Site 36		Site 3/	Site 37	Site 37	Site 38	Site 38	Site 38	Site 38	Site 39	Site 39	Site 40	Site 40	Site 41	Site 41	Site 41	Site 41	Site 42	Site 43	Site 43	Site 43	Site 43	Site 43	Site 44	Site 44	Site 44	Site 45	Site 45	Site 45	Site 46	Site 46					

Slope																																		
ame Bed								ъ				4		2		2				4	-		2	-1	1									
Bullion Creek Rh																																		
Sentinel Butte																																		
Bear Den			4																															
Camels Butte			7																															
XRD Analysis																																		
XRF Analysis	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×		×	×		×	×	×	×	×	×	×	×	×	×
Ft Below Top of BDM or RB	ε	4	9	1	2	10	14	18	1	4	17	18	-	4	m	9	1	ε	9	11	-	-	4	1	m	9 (above)	6.5 (above)	3 (above)	1 (above)	2.5	m	4	6	13
Lithologic Description	gry wht clyst, FeO	orng/grv clvst. FeO. polvs	orng/gry clyst, FeO, polys	wht/gry clyst-mdst,	wht/gry brn mdst, sandy	gry/wht/orng mdst, FeO	gry/wht/orng mdst, slight FeO	gry/wht/orng mdst, clight EoO	gry/orng/wht mdst	gry/wht clyst	dk brn blk clyst, carb	gry mdst, silty	wht/gry mdst, some FeO	wht/gry mdst, some FeO	wht/gry mdst, some FeO	wht/gry mdst, some FeO	yel/gry clyst	yel/gry clyst	gry clyst, carb	gry/wht clyst	gry/wht pink mdst, FeO root conc	gry/wht sltst, FeO suberes	gry/wht sitst, FeO suberes	wht mdst, slty	wht mdst, slty	yel/brn mdst, FeO chips	wht mdst	dk brn clyst, carb	gry/brn mdst, rootlets	wht/gry sltst, rootlets	wht/gry sltst, rootlets	wht/gry sltst, rootlets	gry ss, sltst, slty, carb	brn mdst, carb
Sample	46C	46D	46E	47A	47B	47C	47D	47E	48A	48B	48C	48D	49A	49B	50A	50B	51A	51B	51C	51D	52A	53A	53B	54A	55A	56A	56B	56C	56D	56E	56F	56G	56H	561
Stratigraphic Unit	Bear Den Mbr	Bear Den Mbr	Bear Den Mbr	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Bullion Ck	Bullion Ck	Bullion Ck	Bullion Ck	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed
Elevation Outcrop Top				2,920					3,020				3,010		3,020						3,020	2,760		2,900	2,900	2,900					Type Section			
Sect	36 nw/nw/se	36 nw/nw/se	36 nw/nw/se	/ 28 se/ne/se	/ 28 se/ne/se	/ 28 se/ne/se	/ 28 se/ne/se	/ 28 se/ne/se	/ 28 se/nw/nw	/ 28 se/nw/nw	/ 28 se/nw/nw	/ 28 se/nw/nw	/ 16 nw/sw/sw	/ 16 nw/sw/sw	/ 6 sw/ne/se	/ 6 sw/ne/se	1 ne/ne/ne	1 ne/ne/ne	1 ne/ne/ne	1 ne/ne/ne	29 nw/ne/nw	34 se/sw/se	34 se/sw/se	/ 11 sw/nw/nw	/ 4 ne/nw/ne	/ 12 ne/se/sw	/ 12 ne/se/sw	/ 12 ne/se/sw	/ 12 ne/se/sw	/ 12 ne/se/sw	/ 12 ne/se/sw	/ 12 ne/se/sw	/ 12 ne/se/sw	/ 12 ne/se/sw
Township	T137N, R97W	T137N. R97W	T137N, R97W	r135N, R104M	r135N, R104M	135N, R104M	r135N, R104M	r135N, R104M	r133N, R103M	T133N, R103M	T133N, R103M	^r 133N, R103M	^r 133N, R103M	^T 133N, R103M	131N, R102W	^r 131N, R102M	T129N, R96W	T129N, R96W	T129N, R96W	T129N, R96W	T130N, R97W	T131N, R99W	T131N, R99W	r130N, R101M	^r 130N, R101M	T133N, R103M	^T 133N, R103M	^r 133N, R103M	⁷ 133N, R103M	^T 133N, R103M	r133N, R103M	r133N, R103M	r133N, R103M	r133N, R103M
SAMPLES	Site 46	Site 46	Site 46	Site 47	Site 47	Site 47	Site 47	Site 47	Site 48	Site 48	Site 48	Site 48	Site 49	Site 49	Site 50	Site 50 1	Site 51	Site 51	Site 51	Site 51	Site 52	Site 53	Site 53	Site 54	Site 55	Site 56 1	Site 56 1	Site 56	Site 56	Site 56 1	Site 56	Site 56	Site 56	Site 56

Slope																						0	0	
Rhame Bed	9		2	1												6		2				4	120	232 total samples
Bullion Creek	4															m						0	7	
Butte																						0	m	
Bear Den																						0	66	
Camels Butte																						0	m	
XRD Analysis																								
XRF Analysis					×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×		
Ft Below lop of BDM or RB	15	1	ø	m	3 (above)	1 (above)	1 (above)	1	m	7	∞	12	18	22	26	16	2	5	4	13	18	20		
Lithologic Description	tuffaceous lense in coal	gry/wht mdst, sandy	gry mdst, lig lenses	gry wht mdst, some FeO	gold mdst, FeO conc	gry wht mdst	dk gry clyst, carb, paper shale	gry wht mdst, some FeO	gry wht mdst, some FeO	gry mdst, sandy mid, carb zonas	brt wht mdst, FeO fracs&spheres, roots	brt wht mdst, FeO fracs& spheres roots	brt wht mdst, FeO fracs&spheres, roots	brt wht mdst, FeO frace& coheres roots	brt wht mdst, FeO frace&suberes_roots	brt wht mdst, FeO fracs&spheres_roots	brt wht mdst, sandy	brt wht ss, clyey	brt wht ss, FeO conc suberes	lark brn clyst, carb paper shale	brt wht ss, FeO conc suberes	ss weathering rind		
Sample	56J	57A	57B	58A	59A	59B	59C	59D	59E	59F	59G	59H	591	59J	59K	59L	60A	60B	61A	61B c	61C	61D		
Stratigraphic Unit	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Bullion Ck	Bullion Ck	Bullion Ck	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed	Rhame Bed		
Elevation Outcrop Top		2,000			2,100												2,340		2,100					
t.	ne/se/sw	se/nw/ne	se/nw/ne	ws/wu/ws	sw/se/se	sw/se/se	sw/se/se	sw/se/se	sw/se/se	sw/se/se	sw/se/se	sw/se/se	sw/se/se	sw/se/se	sw/se/se	sw/se/se	ws/ws/wu	ws/ws/wu	nw/nw/ne	nw/nw/ne	nw/nw/ne	nw/nw/ne		
Sec	12	25	25	4	35	35	35	35	35	35	35	35	35	35	35	35	11	11	16	16	16	16		
Township	33N, R103W	137N, R86W	137N, R86W	137N, R86W	137N, R86W	137N, R86W	137N, R86W	137N, R86W	137N, R86W	137N, R86W	137N, R86W	137N, R86W	137N, R86W	137N, R86W	137N, R86W	137N, R86W	134N, R87W	134N, R87W	136N, R87W	136N, R87W	136N, R87W	136N, R87W		
SAMPLES	Site 56 T1	Site 57 T	Site 57 T	Site 58 T	Site 59 T	Site 59 T	Site 59 T	Site 59 T	Site 59 T	Site 59 T	Site 59 T	Site 59 T	Site 59 T	Site 59 T	Site 59 T	Site 59 T	Site 60 T	Site 60 T	Site 61 T	Site 61 T	Site 61 T	Site 61 T		

Appendix B

Chemistry

		1A			2A			2 B	
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %
Na2O	0.0483	0.0251	0.0510	0.0843	0.0249	0.0893	0.1124	0.0238	0.1196
MgO	0.2843	0.0216	0.3003	0.6662	0.0225	0.7057	0.5478	0.0221	0.5828
Al2O3	16.2034	0.0186	17.1156	18.7031	0.0194	19.8113	18.4578	0.0197	19.6366
SiO2	75.9399	0.0330	80.2154	70.3797	0.0318	74.5500	70.5811	0.0319	75.0887
P2O5	0.0238	0.0042	0.0251	0.0282	0.0043	0.0299	0.0366	0.0042	0.0389
SO3	0.0388	0.0072	0.0410	0.0963	0.0070	0.1020	0.0894	0.0071	0.0951
Cl	0.0037	0.0096	0.0039	0.0051	0.0093	0.0054	0.0000	0.0095	0.0000
К2О	0.8047	0.0039	0.8500	2.3325	0.0044	2.4707	2.0434	0.0043	2.1739
CaO	0.1450	0.0052	0.1532	0.0858	0.0051	0.0909	0.0852	0.0052	0.0906
TiO2	0.5205	0.0358	0.5498	0.6229	0.0364	0.6598	0.7886	0.0358	0.8390
V2O5	0.0196	0.0055	0.0207	0.0204	0.0055	0.0216	0.0352	0.0055	0.0375
Cr2O3	0.0091	0.0015	0.0096	0.0091	0.0015	0.0096	0.0129	0.0016	0.0137
MnO	0.0040	0.0024	0.0042	0.0033	0.0024	0.0035	0.0060	0.0024	0.0064
Fe2O3	0.5244	0.0049	0.5539	1.2233	0.0049	1.2958	1.0427	0.0049	1.1093
Co2O3	0.0011	0.0018	0.0012	0.0013	0.0018	0.0014	0.0017	0.0018	0.0018
NiO	0.0145	0.0014	0.0153	0.0129	0.0014	0.0137	0.0140	0.0014	0.0149
CuO	0.0105	0.0012	0.0111	0.0109	0.0012	0.0115	0.0149	0.0012	0.0159
ZnO	0.0096	0.0010	0.0101	0.0058	0.0010	0.0061	0.0107	0.0010	0.0114
Ga2O3	0.0024	0.0011	0.0025	0.0042	0.0011	0.0044	0.0037	0.0011	0.0039
As2O3	0.0000	0.0010	0.0000	0.0024	0.0010	0.0025	0.0016	0.0010	0.0017
Br	0.0002	0.0007	0.0002	0.0000	0.0007	0.0000	0.0003	0.0007	0.0003
Rb2O	0.0046	0.0007	0.0049	0.0148	0.0007	0.0157	0.0108	0.0007	0.0115
SrO	0.0030	0.0007	0.0032	0.0044	0.0007	0.0047	0.0089	0.0007	0.0095
Y2O3	0.0000	0.0008	0.0000	0.0017	0.0008	0.0018	0.0021	0.0008	0.0022
ZrO2	0.0153	0.0006	0.0162	0.0280	0.0006	0.0297	0.0295	0.0006	0.0314
Nb2O5	0.0002	0.0008	0.0002	0.0015	0.0008	0.0016	0.0012	0.0008	0.0013
MoO3	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000
BaO	0.0334	0.0140	0.0353	0.0484	0.0139	0.0513	0.0497	0.0147	0.0529
HfO2	0.0027	0.0039	0.0028	0.0043	0.0038	0.0046	0.0042	0.0039	0.0045
PbO	0.0024	0.0020	0.0025	0.0000	0.0020	0.0000	0.0000	0.0020	0.0000
ThO2	0.0000	0.0014	0.0000	0.0000	0.0013	0.0000	0.0009	0.0014	0.0010
Ра	0.0008	0.0011	0.0008	0.0051	0.0011	0.0054	0.0031	0.0011	0.0033
U3O8	0.0000	0.0002	0.0000	0.0000	0.0002	0.0000	0.0004	0.0002	0.0004
TGA:	5.3300			5.5940			6.0030		
Total:	100.0000			100.0000			100.0000		

		3A			3 B			4 A	
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %
Na2O	0.1353	0.0250	0.1442	0.1085	0.0260	0.1159	0.0795	0.0245	0.0833
MgO	0.7695	0.0229	0.8201	0.6970	0.0232	0.7444	0.2126	0.0213	0.2228
Al2O3	19.8573	0.0202	21.1642	20.2815	0.0206	21.6604	14.2453	0.0175	14.9317
SiO2	67.6395	0.0314	72.0912	67.7392	0.0316	72.3447	76.4352	0.0326	80.1182
P2O5	0.0360	0.0042	0.0384	0.0379	0.0042	0.0405	0.0274	0.0042	0.0287
SO3	0.0733	0.0072	0.0781	0.0717	0.0072	0.0766	0.0413	0.0070	0.0433
Cl	0.0052	0.0095	0.0055	0.0000	0.0099	0.0000	0.0019	0.0092	0.0020
K2O	1.9624	0.0043	2.0916	1.9705	0.0044	2.1045	1.2033	0.0039	1.2613
CaO	0.1764	0.0053	0.1880	0.1547	0.0053	0.1652	0.0896	0.0052	0.0939
TiO2	0.8069	0.0353	0.8600	0.7483	0.0366	0.7992	0.7043	0.0360	0.7382
V2O5	0.0310	0.0055	0.0330	0.0313	0.0055	0.0334	0.0181	0.0056	0.0190
Cr2O3	0.0117	0.0015	0.0125	0.0096	0.0016	0.0102	0.0092	0.0015	0.0096
MnO	0.0205	0.0024	0.0218	0.0063	0.0025	0.0067	0.0150	0.0024	0.0157
Fe2O3	2.1576	0.0298	2.2996	1.6411	0.0051	1.7527	2.2245	0.0292	2.3317
Co2O3	0.0012	0.0018	0.0013	0.0010	0.0018	0.0011	0.0013	0.0018	0.0014
NiO	0.0125	0.0014	0.0133	0.0139	0.0014	0.0148	0.0130	0.0014	0.0136
CuO	0.0102	0.0012	0.0109	0.0108	0.0012	0.0115	0.0091	0.0012	0.0095
ZnO	0.0040	0.0010	0.0043	0.0047	0.0010	0.0050	0.0060	0.0010	0.0063
Ga2O3	0.0030	0.0011	0.0032	0.0037	0.0012	0.0039	0.0024	0.0011	0.0025
As2O3	0.0000	0.0010	0.0000	0.0022	0.0010	0.0023	0.0004	0.0010	0.0004
Br	0.0004	0.0007	0.0004	0.0007	0.0007	0.0007	0.0000	0.0007	0.0000
Rb2O	0.0115	0.0007	0.0123	0.0109	0.0007	0.0116	0.0058	0.0007	0.0061
SrO	0.0068	0.0007	0.0073	0.0088	0.0007	0.0094	0.0051	0.0007	0.0053
Y2O3	0.0024	0.0008	0.0026	0.0008	0.0008	0.0009	0.0010	0.0007	0.0010
ZrO2	0.0261	0.0007	0.0278	0.0251	0.0007	0.0268	0.0154	0.0006	0.0161
Nb2O5	0.0018	0.0008	0.0019	0.0012	0.0008	0.0013	0.0001	0.0008	0.0001
MoO3	0.0000	0.0008	0.0000	0.0001	0.0008	0.0001	0.0000	0.0008	0.0000
BaO	0.0506	0.0140	0.0539	0.0426	0.0145	0.0455	0.0298	0.0144	0.0312
HfO2	0.0033	0.0039	0.0035	0.0043	0.0039	0.0046	0.0040	0.0038	0.0042
PbO	0.0038	0.0020	0.0040	0.0019	0.0020	0.0020	0.0007	0.0019	0.0007
ThO2	0.0010	0.0014	0.0011	0.0000	0.0014	0.0000	0.0008	0.0013	0.0008
Ра	0.0038	0.0011	0.0040	0.0035	0.0011	0.0037	0.0013	0.0010	0.0014
0308	0.0000	0.0002	0.0000	0.0004	0.0002	0.0004	0.0000	0.0002	0.0000
TGA:	6.1750			6.3660			4.5970		
Total:	100.0000			100.0000			100.0000		

		4 B			4C			5A	
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %
Na2O	0.0941	0.0239	0.0984	0.0601	0.0245	0.0629	0.1248	0.0241	0.1320
MgO	0.1609	0.0215	0.1682	0.1798	0.0208	0.1883	0.2979	0.0217	0.3152
Al2O3	12.9544	0.0169	13.5440	13.1617	0.0168	13.7809	16.4780	0.0183	17.4332
SiO2	77.4682	0.0329	80.9939	77.4522	0.0327	81.0958	73.1131	0.0320	77.3512
P2O5	0.0316	0.0041	0.0330	0.0264	0.0042	0.0276	0.0317	0.0043	0.0335
SO3	0.1263	0.0070	0.1321	0.1740	0.0071	0.1822	0.2229	0.0071	0.2358
Cl	0.0000	0.0094	0.0000	0.0000	0.0094	0.0000	0.0000	0.0096	0.0000
К2О	1.2405	0.0040	1.2970	1.0715	0.0039	1.1219	1.6743	0.0041	1.7714
CaO	0.0297	0.0051	0.0311	0.0480	0.0051	0.0503	0.1397	0.0052	0.1478
TiO2	0.5742	0.0345	0.6003	0.5234	0.0340	0.5480	0.9379	0.0356	0.9923
V2O5	0.0183	0.0053	0.0191	0.0230	0.0052	0.0241	0.0401	0.0053	0.0424
Cr2O3	0.0097	0.0015	0.0101	0.0088	0.0015	0.0092	0.0129	0.0015	0.0136
MnO	0.0178	0.0023	0.0186	0.0080	0.0024	0.0084	0.0145	0.0024	0.0153
Fe2O3	2.8008	0.0298	2.9283	2.6667	0.0050	2.7922	1.2740	0.0294	1.3479
Co2O3	0.0021	0.0018	0.0022	0.0008	0.0018	0.0008	0.0014	0.0018	0.0015
NiO	0.0126	0.0013	0.0132	0.0118	0.0014	0.0124	0.0126	0.0014	0.0133
CuO	0.0109	0.0012	0.0114	0.0108	0.0012	0.0113	0.0096	0.0012	0.0102
ZnO	0.0056	0.0010	0.0059	0.0039	0.0010	0.0041	0.0058	0.0010	0.0061
Ga2O3	0.0015	0.0011	0.0016	0.0012	0.0011	0.0013	0.0007	0.0011	0.0007
As2O3	0.0000	0.0010	0.0000	0.0000	0.0010	0.0000	0.0076	0.0010	0.0080
Br	0.0006	0.0007	0.0006	0.0000	0.0007	0.0000	0.0000	0.0007	0.0000
Rb2O	0.0064	0.0007	0.0067	0.0057	0.0007	0.0060	0.0066	0.0007	0.0070
SrO	0.0045	0.0006	0.0047	0.0036	0.0006	0.0038	0.0081	0.0007	0.0086
Y2O3	0.0011	0.0007	0.0012	0.0000	0.0007	0.0000	0.0020	0.0007	0.0021
ZrO2	0.0181	0.0006	0.0189	0.0230	0.0006	0.0241	0.0410	0.0006	0.0434
Nb2O5	0.0001	0.0007	0.0001	0.0000	0.0007	0.0000	0.0000	0.0008	0.0000
MoO3	0.0007	0.0008	0.0007	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000
BaO	0.0466	0.0137	0.0487	0.0343	0.0136	0.0359	0.0574	0.0143	0.0607
HfO2	0.0051	0.0037	0.0053	0.0038	0.0038	0.0040	0.0036	0.0038	0.0038
PbO	0.0023	0.0019	0.0024	0.0024	0.0019	0.0025	0.0000	0.0020	0.0000
ThO2	0.0000	0.0013	0.0000	0.0006	0.0013	0.0006	0.0001	0.0013	0.0001
Ра	0.0018	0.0010	0.0019	0.0011	0.0010	0.0012	0.0027	0.0010	0.0029
0308	0.0004	0.0002	0.0004	0.0002	0.0002	0.0002	0.0000	0.0002	0.0000
TGA:	4.3530			4.4930			5.4790		
Total:	100.0000			100.0000			100.0000		

		6A			6B			6C	
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %
Na2O	0.1213	0.0244	0.1291	0.1104	0.0227	0.1183	0.0719	0.0239	0.0756
MgO	0.4536	0.0201	0.4829	0.0854	0.0184	0.0916	0.0396	0.0192	0.0416
Al2O3	19.4987	0.0201	20.7566	20.6083	0.0193	22.0923	14.1422	0.0174	14.8707
SiO2	69.9837	0.0319	74.4983	68.5311	0.0299	73.4658	77.5423	0.0327	81.5368
P2O5	0.0319	0.0042	0.0340	0.0292	0.0038	0.0313	0.0264	0.0043	0.0278
SO3	0.1220	0.0073	0.1299	0.1462	0.0064	0.1567	0.1376	0.0072	0.1447
Cl	0.0000	0.0096	0.0000	0.0000	0.0087	0.0000	0.0000	0.0094	0.0000
К2О	1.6893	0.0041	1.7983	1.5035	0.0036	1.6118	0.9064	0.0038	0.9531
CaO	0.0605	0.0052	0.0644	0.0654	0.0048	0.0701	0.0579	0.0051	0.0609
TiO2	0.8322	0.0361	0.8859	0.7807	0.0321	0.8369	1.1360	0.0349	1.1945
V2O5	0.0303	0.0055	0.0323	0.0265	0.0049	0.0284	0.0263	0.0054	0.0277
Cr2O3	0.0105	0.0015	0.0112	0.0104	0.0014	0.0111	0.0091	0.0015	0.0096
MnO	0.0047	0.0024	0.0050	0.0048	0.0022	0.0051	0.0021	0.0024	0.0022
Fe2O3	0.9637	0.0048	1.0259	1.2562	0.0044	1.3467	0.8905	0.0047	0.9364
Co2O3	0.0013	0.0018	0.0014	0.0004	0.0016	0.0004	0.0017	0.0018	0.0018
NiO	0.0114	0.0014	0.0121	0.0104	0.0012	0.0112	0.0107	0.0014	0.0113
CuO	0.0099	0.0012	0.0105	0.0089	0.0011	0.0095	0.0097	0.0012	0.0102
ZnO	0.0049	0.0010	0.0052	0.0031	0.0009	0.0033	0.0023	0.0010	0.0024
Ga2O3	0.0031	0.0011	0.0033	0.0034	0.0010	0.0036	0.0026	0.0011	0.0027
As2O3	0.0002	0.0010	0.0002	0.0035	0.0009	0.0038	0.0000	0.0010	0.0000
Br	0.0005	0.0007	0.0005	0.0007	0.0006	0.0007	0.0008	0.0007	0.0008
Rb2O	0.0097	0.0007	0.0103	0.0075	0.0006	0.0080	0.0059	0.0007	0.0062
SrO	0.0068	0.0007	0.0072	0.0074	0.0006	0.0079	0.0044	0.0006	0.0046
Y2O3	0.0015	0.0008	0.0016	0.0014	0.0007	0.0015	0.0012	0.0007	0.0013
ZrO2	0.0315	0.0006	0.0335	0.0276	0.0006	0.0296	0.0281	0.0006	0.0295
Nb2O5	0.0016	0.0008	0.0017	0.0010	0.0007	0.0011	0.0027	0.0007	0.0028
MoO3	0.0003	0.0008	0.0003	0.0000	0.0007	0.0000	0.0000	0.0008	0.0000
BaO	0.0460	0.0140	0.0490	0.0427	0.0125	0.0458	0.0320	0.0138	0.0337
HfO2	0.0046	0.0038	0.0049	0.0040	0.0035	0.0043	0.0030	0.0038	0.0032
PbO	0.0008	0.0019	0.0009	0.0000	0.0018	0.0000	0.0056	0.0019	0.0059
ThO2	0.0000	0.0013	0.0000	0.0007	0.0012	0.0007	0.0007	0.0013	0.0007
Ра	0.0033	0.0011	0.0035	0.0023	0.0010	0.0025	0.0010	0.0010	0.0011
U3O8	0.0001	0.0002	0.0001	0.0000	0.0002	0.0000	0.0002	0.0002	0.0002
TGA:	6.0600			6.7170			4.8990		
Total:	100.0000			100.0000			100.0000		

	6D			6E			6F		
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %
Na2O	0.0827	0.0249	0.0884	0.0831	0.0235	0.0882	0.1196	0.0241	0.1282
MgO	0.3958	0.0196	0.4232	0.0737	0.0203	0.0782	0.5999	0.0208	0.6428
Al2O3	19.5808	0.0201	20.9377	18.6454	0.0197	19.7832	21.6552	0.0211	23.2053
SiO2	69.7335	0.0319	74.5661	71.9341	0.0325	76.3234	66.4569	0.0321	71.2140
P2O5	0.0276	0.0043	0.0295	0.0306	0.0044	0.0325	0.0397	0.0044	0.0425
SO3	0.1958	0.0075	0.2094	0.0730	0.0072	0.0775	0.1090	0.0075	0.1168
Cl	0.0000	0.0097	0.0000	0.0000	0.0099	0.0000	0.0000	0.0098	0.0000
K2O	1.4604	0.0042	1.5616	1.5067	0.0040	1.5986	2.0158	0.0044	2.1601
CaO	0.0757	0.0052	0.0809	0.0578	0.0052	0.0613	0.1122	0.0055	0.1202
TiO2	0.7103	0.0377	0.7595	0.8289	0.0365	0.8795	0.8687	0.0368	0.9309
V2O5	0.0122	0.0059	0.0130	0.0279	0.0055	0.0296	0.0387	0.0056	0.0415
Cr2O3	0.0109	0.0015	0.0117	0.0100	0.0016	0.0106	0.0105	0.0016	0.0113
MnO	0.0029	0.0024	0.0031	0.0042	0.0024	0.0045	0.0053	0.0025	0.0057
Fe2O3	1.1032	0.0050	1.1797	0.8400	0.0049	0.8913	1.1366	0.0050	1.2180
Co2O3	0.0014	0.0018	0.0015	0.0012	0.0018	0.0013	0.0010	0.0019	0.0011
NiO	0.0119	0.0014	0.0127	0.0115	0.0014	0.0122	0.0120	0.0014	0.0129
CuO	0.0108	0.0012	0.0115	0.0111	0.0012	0.0118	0.0119	0.0012	0.0128
ZnO	0.0036	0.0010	0.0038	0.0036	0.0010	0.0038	0.0054	0.0010	0.0058
Ga2O3	0.0026	0.0011	0.0028	0.0033	0.0011	0.0035	0.0052	0.0012	0.0056
As2O3	0.0015	0.0010	0.0016	0.0008	0.0010	0.0009	0.0006	0.0010	0.0006
Br	0.0000	0.0007	0.0000	0.0001	0.0007	0.0001	0.0002	0.0007	0.0002
Rb2O	0.0077	0.0007	0.0082	0.0089	0.0007	0.0094	0.0112	0.0007	0.0120
SrO	0.0063	0.0007	0.0067	0.0063	0.0007	0.0067	0.0092	0.0007	0.0099
Y2O3	0.0009	0.0008	0.0010	0.0009	0.0008	0.0010	0.0009	0.0008	0.0010
ZrO2	0.0298	0.0007	0.0319	0.0383	0.0006	0.0406	0.0237	0.0007	0.0254
Nb2O5	0.0018	0.0008	0.0019	0.0012	0.0008	0.0013	0.0013	0.0008	0.0014
MoO3	0.0001	0.0008	0.0001	0.0007	0.0008	0.0007	0.0000	0.0008	0.0000
BaO	0.0395	0.0141	0.0422	0.0388	0.0140	0.0412	0.0611	0.0142	0.0655
HfO2	0.0049	0.0038	0.0052	0.0040	0.0039	0.0042	0.0022	0.0040	0.0024
PbO	0.0016	0.0020	0.0017	0.0000	0.0020	0.0000	0.0007	0.0020	0.0008
ThO2	0.0000	0.0014	0.0000	0.0004	0.0014	0.0004	0.0000	0.0014	0.0000
Ра	0.0029	0.0011	0.0031	0.0024	0.0011	0.0025	0.0045	0.0011	0.0048
U308	0.0002	0.0002	0.0002	0.0000	0.0002	0.0000	0.0005	0.0002	0.0005
TGA:	6.4810			5.7510			6.6800		
Total:	100.0000			100.0000			100.0000		
	6H			7A			7B		
--------	----------	-----------	---------	----------	-----------	---------	----------	-----------	---------
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %
Na2O	0.0669	0.0222	0.0709	0.1552	0.0244	0.1694	0.1638	0.0253	0.1752
MgO	0.0345	0.0199	0.0366	0.0664	0.0210	0.0725	0.4984	0.0205	0.5332
Al2O3	17.2402	0.0193	18.2685	20.9349	0.0211	22.8473	20.3590	0.0205	21.7821
SiO2	74.5114	0.0331	78.9558	67.4309	0.0323	73.5905	68.1210	0.0319	72.8824
P2O5	0.0277	0.0044	0.0293	0.0244	0.0045	0.0266	0.0404	0.0043	0.0432
SO3	0.1269	0.0073	0.1345	0.1470	0.0076	0.1604	0.1534	0.0073	0.1641
Cl	0.0034	0.0096	0.0036	0.0038	0.0098	0.0042	0.0011	0.0095	0.0012
К2О	0.9092	0.0040	0.9634	0.2111	0.0037	0.2304	1.3604	0.0041	1.4555
CaO	0.0641	0.0054	0.0679	0.2281	0.0053	0.2489	0.0280	0.0052	0.0300
TiO2	0.7390	0.0362	0.7831	1.1387	0.0357	1.2427	0.8034	0.0358	0.8596
V2O5	0.0234	0.0056	0.0248	0.0199	0.0056	0.0217	0.0314	0.0055	0.0336
Cr2O3	0.0094	0.0016	0.0100	0.0088	0.0016	0.0096	0.0123	0.0015	0.0132
MnO	0.0052	0.0024	0.0055	0.0048	0.0025	0.0052	0.0066	0.0024	0.0071
Fe2O3	0.4931	0.0050	0.5225	1.1404	0.0050	1.2446	1.7644	0.0050	1.8877
Co2O3	0.0002	0.0018	0.0002	0.0000	0.0019	0.0000	0.0000	0.0018	0.0000
NiO	0.0119	0.0014	0.0126	0.0125	0.0014	0.0136	0.0118	0.0014	0.0126
CuO	0.0117	0.0012	0.0124	0.0105	0.0012	0.0115	0.0105	0.0012	0.0112
ZnO	0.0029	0.0010	0.0031	0.0034	0.0010	0.0037	0.0024	0.0010	0.0026
Ga2O3	0.0019	0.0012	0.0020	0.0053	0.0012	0.0058	0.0046	0.0011	0.0049
As2O3	0.0000	0.0010	0.0000	0.0000	0.0010	0.0000	0.0007	0.0010	0.0007
Br	0.0003	0.0007	0.0003	0.0008	0.0007	0.0009	0.0003	0.0007	0.0003
Rb2O	0.0047	0.0007	0.0050	0.0008	0.0007	0.0009	0.0081	0.0007	0.0087
SrO	0.0034	0.0007	0.0036	0.0038	0.0007	0.0041	0.0079	0.0007	0.0084
Y2O3	0.0008	0.0008	0.0009	0.0021	0.0008	0.0023	0.0007	0.0008	0.0008
ZrO2	0.0466	0.0007	0.0494	0.0553	0.0007	0.0604	0.0320	0.0007	0.0342
Nb2O5	0.0013	0.0008	0.0014	0.0026	0.0008	0.0028	0.0011	0.0008	0.0012
MoO3	0.0002	0.0008	0.0002	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000
BaO	0.0064	0.0149	0.0068	0.0088	0.0144	0.0096	0.0338	0.0142	0.0362
HfO2	0.0088	0.0039	0.0093	0.0059	0.0039	0.0064	0.0058	0.0039	0.0062
PbO	0.0011	0.0020	0.0012	0.0025	0.0020	0.0027	0.0004	0.0020	0.0004
ThO2	0.0004	0.0014	0.0004	0.0008	0.0014	0.0009	0.0009	0.0014	0.0010
Ра	0.0018	0.0011	0.0019	0.0004	0.0011	0.0004	0.0021	0.0011	0.0022
U3O8	0.0000	0.0002	0.0000	0.0001	0.0002	0.0001	0.0003	0.0002	0.0003
TGA:	5.6290			8.3700			6.5330		
Total:	100.0000			100.0000			100.0000		

		7B			7C			10A			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %		
Na2O	0.1638	0.0253	0.1752	0.3338	0.0251	0.3576	0.3132	0.0256	0.3250		
MgO	0.4984	0.0205	0.5332	0.7320	0.0207	0.7842	0.9812	0.0217	1.0183		
Al2O3	20.3590	0.0205	21.7821	21.9647	0.0211	23.5319	12.3309	0.0164	12.7967		
SiO2	68.1210	0.0319	72.8824	64.1718	0.0310	68.7506	77.3617	0.0325	80.2840		
P2O5	0.0404	0.0043	0.0432	0.0315	0.0043	0.0338	0.0261	0.0042	0.0271		
SO3	0.1534	0.0073	0.1641	0.2387	0.0073	0.2557	0.4908	0.0072	0.5093		
Cl	0.0011	0.0095	0.0012	0.0000	0.0098	0.0000	0.0000	0.0094	0.0000		
К2О	1.3604	0.0041	1.4555	2.2080	0.0042	2.3656	2.3238	0.0040	2.4116		
CaO	0.0280	0.0052	0.0300	0.0366	0.0053	0.0392	0.0435	0.0050	0.0451		
TiO2	0.8034	0.0358	0.8596	0.9080	0.0365	0.9728	0.6737	0.0353	0.6991		
V2O5	0.0314	0.0055	0.0336	0.0519	0.0056	0.0556	0.0198	0.0053	0.0205		
Cr2O3	0.0123	0.0015	0.0132	0.0110	0.0016	0.0118	0.0081	0.0015	0.0084		
MnO	0.0066	0.0024	0.0071	0.0063	0.0024	0.0068	0.0051	0.0024	0.0053		
Fe2O3	1.7644	0.0050	1.8877	2.4838	0.0051	2.6610	1.6480	0.0048	1.7103		
Co2O3	0.0000	0.0018	0.0000	0.0001	0.0019	0.0001	0.0007	0.0018	0.0007		
NiO	0.0118	0.0014	0.0126	0.0112	0.0014	0.0120	0.0132	0.0014	0.0137		
CuO	0.0105	0.0012	0.0112	0.0106	0.0012	0.0114	0.0133	0.0012	0.0138		
ZnO	0.0024	0.0010	0.0026	0.0022	0.0010	0.0024	0.0056	0.0010	0.0058		
Ga2O3	0.0046	0.0011	0.0049	0.0041	0.0012	0.0044	0.0022	0.0011	0.0023		
As2O3	0.0007	0.0010	0.0007	0.0108	0.0010	0.0116	0.0014	0.0010	0.0015		
Br	0.0003	0.0007	0.0003	0.0003	0.0007	0.0003	0.0003	0.0007	0.0003		
Rb2O	0.0081	0.0007	0.0087	0.0135	0.0007	0.0145	0.0198	0.0007	0.0205		
SrO	0.0079	0.0007	0.0084	0.0083	0.0007	0.0089	0.0055	0.0006	0.0057		
Y2O3	0.0007	0.0008	0.0008	0.0007	0.0008	0.0007	0.0016	0.0007	0.0017		
ZrO2	0.0320	0.0007	0.0342	0.0204	0.0007	0.0219	0.0273	0.0006	0.0283		
Nb2O5	0.0011	0.0008	0.0012	0.0017	0.0008	0.0018	0.0010	0.0007	0.0010		
MoO3	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000		
BaO	0.0338	0.0142	0.0362	0.0616	0.0142	0.0660	0.0313	0.0142	0.0325		
HfO2	0.0058	0.0039	0.0062	0.0046	0.0039	0.0049	0.0021	0.0038	0.0022		
PbO	0.0004	0.0020	0.0004	0.0064	0.0021	0.0069	0.0000	0.0019	0.0000		
ThO2	0.0009	0.0014	0.0010	0.0001	0.0014	0.0001	0.0004	0.0013	0.0004		
Ра	0.0021	0.0011	0.0022	0.0047	0.0011	0.0050	0.0080	0.0010	0.0083		
U3O8	0.0003	0.0002	0.0003	0.0005	0.0002	0.0005	0.0006	0.0002	0.0006		
TGA:	6.5330			6.6600			3.6400				
Total:	100.0000			100.0000			100.0000				

		10B			11A		11B			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.2543	0.0271	0.2671	0.0999	0.0241	0.1046	0.1171	0.0244	0.1240	
MgO	1.2599	0.0224	1.3236	0.6732	0.0215	0.7045	0.7937	0.0226	0.8404	
Al2O3	16.6562	0.0186	17.4977	14.6802	0.0174	15.3633	17.6985	0.0193	18.7389	
SiO2	70.7121	0.0317	74.2844	75.1408	0.0324	78.6370	71.4103	0.0320	75.6081	
P2O5	0.0299	0.0043	0.0314	0.0208	0.0043	0.0218	0.0277	0.0042	0.0293	
SO3	0.3772	0.0072	0.3963	0.0757	0.0069	0.0792	0.0905	0.0072	0.0958	
Cl	0.0003	0.0095	0.0003	0.0000	0.0094	0.0000	0.0041	0.0094	0.0043	
K2O	2.7907	0.0042	2.9317	1.8609	0.0040	1.9475	1.7044	0.0040	1.8046	
CaO	0.0580	0.0052	0.0609	0.1649	0.0051	0.1726	0.1992	0.0053	0.2109	
TiO2	0.5777	0.0365	0.6069	0.7317	0.0359	0.7657	0.6877	0.0365	0.7281	
V2O5	0.0191	0.0056	0.0201	0.0134	0.0056	0.0140	0.0138	0.0057	0.0146	
Cr2O3	0.0102	0.0015	0.0107	0.0090	0.0015	0.0094	0.0090	0.0015	0.0095	
MnO	0.0069	0.0024	0.0072	0.0056	0.0023	0.0059	0.0045	0.0024	0.0048	
Fe2O3	2.2953	0.0049	2.4113	1.9310	0.0049	2.0209	1.5362	0.0050	1.6265	
Co2O3	0.0013	0.0018	0.0014	0.0003	0.0018	0.0003	0.0008	0.0018	0.0008	
NiO	0.0133	0.0014	0.0140	0.0114	0.0014	0.0119	0.0132	0.0014	0.0140	
CuO	0.0113	0.0012	0.0119	0.0103	0.0012	0.0108	0.0145	0.0012	0.0153	
ZnO	0.0069	0.0010	0.0072	0.0030	0.0010	0.0031	0.0044	0.0010	0.0047	
Ga2O3	0.0025	0.0011	0.0026	0.0044	0.0011	0.0046	0.0040	0.0011	0.0042	
As2O3	0.0000	0.0010	0.0000	0.0000	0.0010	0.0000	0.0000	0.0010	0.0000	
Br	0.0000	0.0007	0.0000	0.0000	0.0007	0.0000	0.0007	0.0007	0.0007	
Rb2O	0.0212	0.0007	0.0223	0.0144	0.0007	0.0151	0.0173	0.0007	0.0183	
SrO	0.0061	0.0007	0.0064	0.0056	0.0007	0.0059	0.0085	0.0007	0.0090	
Y2O3	0.0012	0.0008	0.0013	0.0016	0.0007	0.0017	0.0011	0.0008	0.0012	
ZrO2	0.0227	0.0007	0.0238	0.0376	0.0006	0.0394	0.0296	0.0006	0.0313	
Nb2O5	0.0010	0.0008	0.0010	0.0018	0.0008	0.0019	0.0015	0.0008	0.0016	
MoO3	0.0000	0.0008	0.0000	0.0006	0.0008	0.0006	0.0000	0.0008	0.0000	
BaO	0.0389	0.0141	0.0409	0.0405	0.0137	0.0424	0.0392	0.0141	0.0415	
HfO2	0.0050	0.0038	0.0053	0.0040	0.0038	0.0042	0.0062	0.0038	0.0066	
PbO	0.0037	0.0020	0.0039	0.0047	0.0019	0.0049	0.0040	0.0020	0.0042	
ThO2	0.0001	0.0014	0.0001	0.0007	0.0013	0.0007	0.0006	0.0014	0.0006	
Ра	0.0079	0.0011	0.0083	0.0053	0.0010	0.0055	0.0053	0.0011	0.0056	
U308	0.000	0.0002	0.000	0.0006	0.0002	0.0006	0.0006	0.0002	0.0006	
TGA:	4.8090			4.4460			5.5520			
Total:	100.0000			100.0000			100.0000			

		13A			13B		13C			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.0894	0.0241	0.0937	0.3358	0.0251	0.3508	0.2987	0.0236	0.3071	
MgO	0.8930	0.0217	0.9360	1.7118	0.0228	1.7884	0.4503	0.0210	0.4629	
Al2O3	13.9648	0.0174	14.6373	16.0398	0.0182	16.7577	9.9440	0.0155	10.2219	
SiO2	74.9031	0.0325	78.5098	68.7169	0.0311	71.7925	83.1882	0.0334	85.5133	
P2O5	0.0264	0.0041	0.0277	0.1417	0.0045	0.1480	0.0226	0.0040	0.0232	
SO3	0.0631	0.0069	0.0661	0.3288	0.0072	0.3435	0.2618	0.0070	0.2691	
Cl	0.0003	0.0094	0.0003	0.0033	0.0093	0.0034	0.0000	0.0093	0.0000	
К2О	2.4904	0.0044	2.6103	3.4858	0.0046	3.6418	1.0858	0.0039	1.1161	
CaO	0.1049	0.0052	0.1100	0.2369	0.0052	0.2475	0.1132	0.0051	0.1164	
TiO2	0.9197	0.0350	0.9640	0.6481	0.0355	0.6771	0.8192	0.0347	0.8421	
V2O5	0.0238	0.0053	0.0249	0.0235	0.0054	0.0245	0.0126	0.0053	0.0130	
Cr2O3	0.0091	0.0015	0.0095	0.0093	0.0015	0.0097	0.0083	0.0015	0.0085	
MnO	0.0030	0.0024	0.0031	0.0214	0.0024	0.0224	0.0050	0.0023	0.0051	
Fe2O3	1.7618	0.0049	1.8466	3.8074	0.0303	3.9778	0.9239	0.0048	0.9497	
Co2O3	0.0003	0.0018	0.0003	0.0007	0.0019	0.0007	0.0016	0.0017	0.0016	
NiO	0.0118	0.0014	0.0124	0.0146	0.0014	0.0153	0.0132	0.0013	0.0136	
CuO	0.0122	0.0012	0.0128	0.0139	0.0012	0.0145	0.0104	0.0011	0.0107	
ZnO	0.0043	0.0010	0.0045	0.0157	0.0010	0.0164	0.0058	0.0010	0.0060	
Ga2O3	0.0066	0.0011	0.0069	0.0030	0.0011	0.0031	0.0011	0.0011	0.0011	
As2O3	0.0000	0.0010	0.0000	0.0011	0.0010	0.0011	0.0000	0.0010	0.0000	
Br	0.0002	0.0007	0.0002	0.0001	0.0007	0.0001	0.0004	0.0007	0.0004	
Rb2O	0.0189	0.0007	0.0198	0.0199	0.0007	0.0208	0.0118	0.0007	0.0121	
SrO	0.0058	0.0007	0.0061	0.0128	0.0007	0.0134	0.0043	0.0006	0.0044	
Y2O3	0.0014	0.0008	0.0015	0.0022	0.0008	0.0023	0.0035	0.0007	0.0036	
ZrO2	0.0338	0.0006	0.0354	0.0300	0.0007	0.0313	0.0508	0.0006	0.0522	
Nb2O5	0.0029	0.0008	0.0030	0.0013	0.0008	0.0014	0.0022	0.0007	0.0023	
MoO3	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	
BaO	0.0378	0.0141	0.0396	0.0742	0.0140	0.0775	0.0293	0.0137	0.0301	
HfO2	0.0058	0.0038	0.0061	0.0020	0.0039	0.0021	0.0041	0.0037	0.0042	
PbO	0.0042	0.0019	0.0044	0.0067	0.0020	0.0070	0.0038	0.0019	0.0039	
ThO2	0.0000	0.0013	0.0000	0.0011	0.0014	0.0011	0.0008	0.0013	0.0008	
Ра	0.0068	0.0011	0.0071	0.0063	0.0011	0.0066	0.0045	0.0010	0.0046	
U3O8	0.0006	0.0002	0.0006	0.0002	0.0002	0.0002	0.0000	0.0002	0.0000	
TGA:	4.5940			4.2840			2.7190			
Total:	100.0000			100.0000			100.0000			

	13D			13G			14A			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.2094	0.0254	0.2189	0.0663	0.0228	0.0678	0.1753	0.0243	0.1824	
MgO	1.0848	0.0228	1.1341	0.4298	0.0203	0.4393	0.8464	0.0191	0.8807	
Al2O3	16.4152	0.0182	17.1619	6.0215	0.0136	6.1542	12.7565	0.0168	13.2731	
SiO2	69.6660	0.0314	72.8351	88.2546	0.0340	90.1993	77.5265	0.0328	80.6660	
P2O5	0.0532	0.0043	0.0556	0.0239	0.0042	0.0244	0.0228	0.0043	0.0237	
SO3	0.1441	0.0073	0.1507	0.1192	0.0069	0.1218	0.1437	0.0072	0.1495	
Cl	0.0000	0.0094	0.0000	0.0000	0.0092	0.0000	0.0026	0.0095	0.0027	
К2О	3.2174	0.0046	3.3637	1.2599	0.0039	1.2877	1.6585	0.0042	1.7257	
CaO	0.1009	0.0052	0.1055	0.0434	0.0049	0.0444	0.1190	0.0052	0.1238	
TiO2	0.6544	0.0358	0.6842	0.7036	0.0341	0.7191	0.9414	0.0353	0.9795	
V2O5	0.0203	0.0054	0.0212	0.0159	0.0052	0.0162	0.0216	0.0055	0.0225	
Cr2O3	0.0097	0.0015	0.0101	0.0069	0.0015	0.0071	0.0086	0.0015	0.0090	
MnO	0.0420	0.0024	0.0439	0.0042	0.0023	0.0043	0.0054	0.0024	0.0056	
Fe2O3	3.8636	0.0301	4.0393	0.7569	0.0046	0.7736	1.7357	0.0048	1.8060	
Co2O3	0.0000	0.0019	0.0000	0.0000	0.0017	0.0000	0.0013	0.0018	0.0014	
NiO	0.0135	0.0014	0.0141	0.0106	0.0013	0.0108	0.0112	0.0014	0.0117	
CuO	0.0133	0.0012	0.0139	0.0106	0.0011	0.0108	0.0104	0.0012	0.0108	
ZnO	0.0076	0.0010	0.0079	0.0018	0.0010	0.0018	0.0035	0.0010	0.0036	
Ga2O3	0.0028	0.0011	0.0029	0.0009	0.0011	0.0009	0.0036	0.0011	0.0037	
As2O3	0.0050	0.0010	0.0052	0.0001	0.0010	0.0001	0.0027	0.0010	0.0028	
Br	0.0000	0.0007	0.0000	0.0002	0.0007	0.0002	0.0002	0.0007	0.0002	
Rb2O	0.0193	0.0007	0.0202	0.0113	0.0007	0.0115	0.0194	0.0007	0.0202	
SrO	0.0073	0.0007	0.0076	0.0034	0.0006	0.0035	0.0055	0.0007	0.0057	
Y2O3	0.0024	0.0008	0.0025	0.0019	0.0007	0.0019	0.0017	0.0008	0.0018	
ZrO2	0.0297	0.0007	0.0311	0.0528	0.0006	0.0540	0.0298	0.0006	0.0310	
Nb2O5	0.0012	0.0008	0.0013	0.0017	0.0007	0.0017	0.0032	0.0008	0.0033	
MoO3	0.0000	0.0008	0.0000	0.0002	0.0008	0.0002	0.0000	0.0008	0.0000	
BaO	0.0546	0.0141	0.0571	0.0328	0.0134	0.0335	0.0392	0.0139	0.0408	
HfO2	0.0049	0.0039	0.0051	0.0055	0.0036	0.0056	0.0050	0.0038	0.0052	
PbO	0.0000	0.0020	0.0000	0.0000	0.0019	0.0000	0.0000	0.0019	0.0000	
ThO2	0.0000	0.0014	0.0000	0.0001	0.0013	0.0001	0.0008	0.0013	0.0008	
Ра	0.0066	0.0011	0.0069	0.0036	0.0010	0.0037	0.0065	0.0011	0.0068	
U3O8	0.0000	0.0002	0.0000	0.0005	0.0002	0.0005	0.0000	0.0002	0.0000	
TGA:	4.3510			2.1560			3.8920			
Total:	100.0000			100.0000			100.0000			

	14B			15A			15B			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.1143	0.0226	0.1194	0.2334	0.0261	0.2528	0.2506	0.0250	0.2691	
MgO	0.1181	0.0182	0.1234	0.6031	0.0209	0.6533	0.6423	0.0207	0.6896	
Al2O3	13.9149	0.0170	14.5336	17.1085	0.0193	18.5323	18.3749	0.0196	19.7285	
SiO2	78.1756	0.0324	81.6515	66.4800	0.0317	72.0127	66.5683	0.0317	71.4720	
P2O5	0.0236	0.0041	0.0246	0.0275	0.0043	0.0298	0.0239	0.0044	0.0257	
SO3	0.0906	0.0070	0.0946	0.1882	0.0075	0.2039	0.6095	0.0076	0.6544	
Cl	0.0032	0.0090	0.0033	0.0000	0.0099	0.0000	0.0032	0.0097	0.0034	
K2O	1.3221	0.0039	1.3809	0.8251	0.0040	0.8938	1.1438	0.0040	1.2281	
CaO	0.0776	0.0050	0.0810	0.2868	0.0053	0.3107	0.2410	0.0053	0.2587	
TiO2	0.6138	0.0335	0.6411	0.7285	0.0361	0.7891	0.6368	0.0359	0.6837	
V2O5	0.0196	0.0051	0.0205	0.0340	0.0054	0.0368	0.0281	0.0055	0.0302	
Cr2O3	0.0078	0.0015	0.0081	0.0097	0.0016	0.0105	0.0107	0.0016	0.0115	
MnO	0.0045	0.0023	0.0047	0.0273	0.0024	0.0296	0.0109	0.0025	0.0117	
Fe2O3	1.1339	0.0048	1.1843	5.6531	0.0317	6.1236	4.4265	0.0303	4.7526	
Co2O3	0.0012	0.0017	0.0013	0.0002	0.0020	0.0002	0.0038	0.0019	0.0041	
NiO	0.0107	0.0013	0.0112	0.0117	0.0015	0.0127	0.0129	0.0014	0.0139	
CuO	0.0100	0.0011	0.0104	0.0118	0.0012	0.0128	0.0109	0.0012	0.0117	
ZnO	0.0027	0.0010	0.0028	0.0029	0.0011	0.0031	0.0038	0.0011	0.0041	
Ga2O3	0.0019	0.0011	0.0020	0.0031	0.0012	0.0034	0.0030	0.0012	0.0032	
As2O3	0.0006	0.0010	0.0006	0.0000	0.0011	0.0000	0.0000	0.0011	0.0000	
Br	0.0005	0.0007	0.0005	0.0003	0.0007	0.0003	0.0002	0.0007	0.0002	
Rb2O	0.0100	0.0007	0.0104	0.0068	0.0008	0.0074	0.0086	0.0008	0.0092	
SrO	0.0034	0.0006	0.0035	0.0067	0.0007	0.0073	0.0221	0.0007	0.0237	
Y2O3	0.0023	0.0007	0.0024	0.0016	0.0008	0.0017	0.0016	0.0008	0.0017	
ZrO2	0.0454	0.0006	0.0474	0.0324	0.0007	0.0351	0.0274	0.0007	0.0294	
Nb2O5	0.0011	0.0007	0.0012	0.0010	0.0008	0.0011	0.0002	0.0008	0.0002	
MoO3	0.0008	0.0008	0.0008	0.0006	0.0009	0.0006	0.0002	0.0009	0.0002	
BaO	0.0234	0.0134	0.0244	0.0234	0.0140	0.0253	0.0586	0.0140	0.0629	
HfO2	0.0058	0.0037	0.0061	0.0038	0.0040	0.0041	0.0045	0.0040	0.0048	
PbO	0.0007	0.0019	0.0007	0.0026	0.0021	0.0028	0.0064	0.0020	0.0069	
ThO2	0.0000	0.0013	0.0000	0.0006	0.0014	0.0006	0.0006	0.0014	0.0006	
Pa	0.0032	0.0010	0.0033	0.0018	0.0011	0.0020	0.0034	0.0011	0.0036	
U308	0.0000	0.0002	0.0000	0.0006	0.0002	0.0006	0.0004	0.0002	0.0004	
TGA:	4.2570			7.6830			6.8610			
Total:	100.0000			100.0000			100.0000			

	15C				15D		15E		
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %
Na2O	0.2017	0.0261	0.2189	0.3164	0.0247	0.3415	0.1653	0.0224	0.1696
MgO	0.6408	0.0204	0.6953	1.1254	0.0201	1.2145	0.0327	0.0178	0.0336
Al2O3	15.5414	0.0186	16.8642	19.4996	0.0203	21.0436	7.1069	0.0144	7.2929
SiO2	64.3723	0.0313	69.8514	61.5943	0.0305	66.4713	88.0439	0.0340	90.3478
P2O5	0.0323	0.0045	0.0351	0.0435	0.0042	0.0469	0.0216	0.0041	0.0222
SO3	0.6584	0.0077	0.7144	0.2578	0.0073	0.2782	0.1410	0.0071	0.1447
Cl	0.0036	0.0096	0.0039	0.0006	0.0096	0.0007	0.0000	0.0093	0.0000
К2О	1.1635	0.0041	1.2625	2.7589	0.0043	2.9774	0.1376	0.0035	0.1412
CaO	0.2160	0.0053	0.2344	0.1217	0.0053	0.1313	0.0268	0.0050	0.0275
TiO2	0.5714	0.0357	0.6200	0.6890	0.0364	0.7436	0.9534	0.0341	0.9783
V2O5	0.0290	0.0054	0.0315	0.0386	0.0055	0.0417	0.0170	0.0052	0.0174
Cr2O3	0.0098	0.0016	0.0106	0.0120	0.0016	0.0130	0.0058	0.0015	0.0060
MnO	0.0355	0.0025	0.0385	0.0137	0.0025	0.0148	0.0027	0.0023	0.0028
Fe2O3	8.5629	0.0318	9.2917	6.0292	0.0319	6.5066	0.6713	0.0046	0.6889
Co2O3	0.0007	0.0021	0.0008	0.0007	0.0020	0.0008	0.0017	0.0017	0.0017
NiO	0.0124	0.0015	0.0135	0.0111	0.0015	0.0120	0.0119	0.0013	0.0122
CuO	0.0116	0.0013	0.0126	0.0128	0.0012	0.0138	0.0105	0.0011	0.0108
ZnO	0.0042	0.0011	0.0046	0.0040	0.0011	0.0043	0.0023	0.0010	0.0024
Ga2O3	0.0019	0.0012	0.0021	0.0036	0.0012	0.0039	0.0016	0.0011	0.0016
As2O3	0.0020	0.0011	0.0022	0.0000	0.0011	0.0000	0.0012	0.0010	0.0012
Br	0.0006	0.0007	0.0006	0.0003	0.0007	0.0003	0.0003	0.0007	0.0003
Rb2O	0.0086	0.0008	0.0093	0.0179	0.0008	0.0193	0.0006	0.0007	0.0006
SrO	0.0071	0.0007	0.0077	0.0124	0.0007	0.0134	0.0025	0.0006	0.0026
Y2O3	0.0005	0.0008	0.0005	0.0005	0.0008	0.0005	0.0039	0.0007	0.0040
ZrO2	0.0340	0.0007	0.0369	0.0177	0.0007	0.0191	0.0633	0.0006	0.0650
Nb2O5	0.0002	0.0008	0.0002	0.0014	0.0008	0.0015	0.0018	0.0007	0.0018
MoO3	0.0003	0.0009	0.0003	0.0002	0.0009	0.0002	0.0003	0.0008	0.0003
BaO	0.0273	0.0142	0.0296	0.0684	0.0141	0.0738	0.0151	0.0133	0.0155
HfO2	0.0025	0.0041	0.0027	0.0018	0.0041	0.0019	0.0065	0.0037	0.0067
PbO	0.0000	0.0021	0.0000	0.0032	0.0021	0.0034	0.0001	0.0019	0.0001
ThO2	0.0000	0.0015	0.0000	0.0004	0.0014	0.0004	0.0000	0.0013	0.0000
Ра	0.0032	0.0011	0.0035	0.0059	0.0011	0.0064	0.0000	0.0010	0.0000
U308	0.0005	0.0002	0.0005	0.000	0.0002	0.0000	0.0003	0.0002	0.0003
TGA	7.8440			7.3370			2.5500		
Total	100.0000			100.0000			100.0000		

		15F		15G			15H			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.2219	0.0242	0.2336	0.2555	0.0253	0.2753	0.3279	0.0244	0.3504	
MgO	0.0587	0.0195	0.0618	0.4555	0.0203	0.4909	0.1067	0.0209	0.1140	
Al2O3	13.5343	0.0171	14.2468	17.8902	0.0192	19.2785	19.0192	0.0199	20.3242	
SiO2	77.9122	0.0331	82.0137	67.9130	0.0318	73.1829	68.3183	0.0319	73.0060	
P2O5	0.0238	0.0043	0.0251	0.0227	0.0042	0.0245	0.0292	0.0043	0.0312	
SO3	0.2398	0.0074	0.2524	0.4525	0.0074	0.4876	0.2201	0.0074	0.2352	
Cl	0.0000	0.0096	0.0000	0.0016	0.0095	0.0017	0.0042	0.0095	0.0045	
К2О	0.2483	0.0037	0.2614	0.6365	0.0039	0.6859	1.2007	0.0041	1.2831	
CaO	0.0522	0.0052	0.0549	0.0730	0.0052	0.0787	0.0519	0.0052	0.0555	
TiO2	1.0171	0.0357	1.0706	0.8867	0.0353	0.9555	0.8769	0.0358	0.9371	
V2O5	0.0267	0.0054	0.0281	0.0298	0.0055	0.0321	0.0283	0.0054	0.0302	
Cr2O3	0.0082	0.0015	0.0086	0.0104	0.0015	0.0112	0.0115	0.0015	0.0123	
MnO	0.0035	0.0024	0.0037	0.0075	0.0024	0.0081	0.0123	0.0024	0.0131	
Fe2O3	1.5444	0.0050	1.6257	4.0614	0.0050	4.3766	3.2494	0.0296	3.4723	
Co2O3	0.0018	0.0018	0.0019	0.0000	0.0019	0.0000	0.0013	0.0018	0.0014	
NiO	0.0102	0.0014	0.0107	0.0113	0.0014	0.0122	0.0103	0.0014	0.0110	
CuO	0.0119	0.0012	0.0125	0.0113	0.0012	0.0122	0.0101	0.0012	0.0108	
ZnO	0.0028	0.0010	0.0029	0.0025	0.0010	0.0027	0.0031	0.0010	0.0033	
Ga2O3	0.0029	0.0011	0.0031	0.0038	0.0012	0.0041	0.0045	0.0012	0.0048	
As2O3	0.0000	0.0010	0.0000	0.0017	0.0010	0.0018	0.0000	0.0010	0.0000	
Br	0.0000	0.0007	0.0000	0.0000	0.0007	0.0000	0.0006	0.0007	0.0006	
Rb2O	0.0018	0.0007	0.0019	0.0047	0.0007	0.0051	0.0085	0.0007	0.0091	
SrO	0.0067	0.0007	0.0071	0.0065	0.0007	0.0070	0.0058	0.0007	0.0062	
Y2O3	0.0028	0.0008	0.0030	0.0008	0.0008	0.0009	0.0009	0.0008	0.0010	
ZrO2	0.0455	0.0006	0.0479	0.0337	0.0007	0.0363	0.0310	0.0007	0.0331	
Nb2O5	0.0018	0.0008	0.0019	0.0016	0.0008	0.0017	0.0016	0.0008	0.0017	
MoO3	0.0002	0.0008	0.0002	0.0000	0.0008	0.0000	0.0002	0.0008	0.0002	
BaO	0.0117	0.0139	0.0123	0.0177	0.0139	0.0191	0.0335	0.0142	0.0358	
HfO2	0.0045	0.0038	0.0047	0.0047	0.0039	0.0051	0.0056	0.0039	0.0060	
PbO	0.0025	0.0020	0.0026	0.0005	0.0020	0.0005	0.0027	0.0020	0.0029	
ThO2	0.0000	0.0013	0.0000	0.0005	0.0014	0.0005	0.0003	0.0014	0.0003	
Ра	0.0009	0.0011	0.0009	0.0011	0.0011	0.0012	0.0024	0.0011	0.0026	
U308	0.0000	0.0002	0.000	0.0001	0.0002	0.0001	0.0000	0.0002	0.0000	
TGA:	5.0010			7.2010			6.4210			
Total:	100.0000			100.0000			100.0000			

		151		15J			15K			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.3000	0.0253	0.3237	0.3286	0.0254	0.3565	0.2308	0.0283	0.2638	
MgO	0.6753	0.0209	0.7286	0.7505	0.0211	0.8142	0.1380	0.0221	0.1577	
Al2O3	21.4594	0.0208	23.1518	22.0031	0.0215	23.8707	17.4625	0.0201	19.9617	
SiO2	62.9466	0.0311	67.9109	59.5617	0.0300	64.6174	48.1846	0.0287	55.0807	
P2O5	0.0312	0.0043	0.0337	0.0321	0.0044	0.0348	0.1357	0.0048	0.1551	
SO3	0.1561	0.0072	0.1684	0.2206	0.0075	0.2393	0.1805	0.0075	0.2063	
Cl	0.0000	0.0096	0.0000	0.0035	0.0095	0.0038	0.0000	0.0099	0.0000	
К2О	1.5220	0.0041	1.6420	1.6006	0.0043	1.7365	1.6103	0.0043	1.8408	
CaO	0.0699	0.0053	0.0754	0.0825	0.0053	0.0895	0.3370	0.0055	0.3852	
TiO2	0.8101	0.0380	0.8740	0.8622	0.0366	0.9354	0.7349	0.0374	0.8401	
V2O5	0.0209	0.0059	0.0225	0.0406	0.0055	0.0441	0.0458	0.0056	0.0524	
Cr2O3	0.0130	0.0016	0.0140	0.0132	0.0016	0.0143	0.0114	0.0016	0.0130	
MnO	0.0129	0.0024	0.0139	0.0180	0.0025	0.0195	0.0729	0.0026	0.0833	
Fe2O3	4.5298	0.0298	4.8871	6.5349	0.0319	7.0896	18.1361	0.0068	20.7317	
Co2O3	0.0044	0.0019	0.0047	0.0000	0.0020	0.0000	0.0000	0.0024	0.0000	
NiO	0.0115	0.0014	0.0124	0.0118	0.0015	0.0128	0.0119	0.0016	0.0136	
CuO	0.0112	0.0012	0.0121	0.0118	0.0012	0.0128	0.0110	0.0014	0.0126	
ZnO	0.0023	0.0011	0.0025	0.0036	0.0011	0.0039	0.0039	0.0012	0.0045	
Ga2O3	0.0044	0.0012	0.0048	0.0040	0.0012	0.0043	0.0031	0.0014	0.0036	
As2O3	0.0000	0.0011	0.0000	0.0000	0.0011	0.0000	0.0061	0.0012	0.0070	
Br	0.0001	0.0007	0.0001	0.0003	0.0007	0.0003	0.0002	0.0008	0.0002	
Rb2O	0.0095	0.0007	0.0103	0.0102	0.0008	0.0111	0.0107	0.0009	0.0122	
SrO	0.0100	0.0007	0.0108	0.0115	0.0007	0.0125	0.0212	0.0008	0.0242	
Y2O3	0.0017	0.0008	0.0018	0.0010	0.0008	0.0011	0.0022	0.0009	0.0025	
ZrO2	0.0253	0.0007	0.0273	0.0232	0.0007	0.0252	0.0174	0.0008	0.0199	
Nb2O5	0.0021	0.0008	0.0023	0.0016	0.0008	0.0017	0.0011	0.0009	0.0013	
MoO3	0.0000	0.0008	0.0000	0.0001	0.0009	0.0001	0.0002	0.0010	0.0002	
BaO	0.0470	0.0140	0.0507	0.0340	0.0149	0.0369	0.0851	0.0147	0.0973	
HfO2	0.0073	0.0040	0.0079	0.0039	0.0040	0.0042	0.0040	0.0045	0.0046	
PbO	0.0016	0.0020	0.0017	0.0031	0.0021	0.0034	0.0000	0.0024	0.0000	
ThO2	0.0009	0.0014	0.0010	0.0007	0.0014	0.0008	0.0010	0.0016	0.0011	
Ра	0.0030	0.0011	0.0032	0.0030	0.0011	0.0033	0.0036	0.0013	0.0041	
U3O8	0.0004	0.0002	0.0004	0.0000	0.0002	0.0000	0.0000	0.0002	0.0000	
TGA	7.3100			7.8240			12.5200			
Total	100.0000			100.0000			100.0000			

		17A			17B		18A			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.1049	0.0243	0.1106	0.1537	0.0234	0.1631	0.1260	0.0255	0.1378	
MgO	0.5051	0.0217	0.5327	0.6043	0.0226	0.6412	0.7111	0.0242	0.7776	
Al2O3	16.4320	0.0185	17.3303	17.3349	0.0190	18.3927	25.0445	0.0226	27.3869	
SiO2	74.4030	0.0325	78.4701	70.6279	0.0319	74.9376	60.8033	0.0306	66.4902	
P2O5	0.0326	0.0043	0.0344	0.0424	0.0044	0.0450	0.0381	0.0044	0.0417	
SO3	0.1555	0.0071	0.1640	0.2451	0.0072	0.2601	0.0958	0.0074	0.1048	
Cl	0.0064	0.0092	0.0067	0.0000	0.0095	0.0000	0.0000	0.0099	0.0000	
К2О	1.3913	0.0040	1.4673	1.5827	0.0041	1.6793	1.8021	0.0042	1.9706	
CaO	0.0795	0.0052	0.0838	0.0589	0.0051	0.0625	0.0689	0.0054	0.0753	
TiO2	0.7366	0.0350	0.7769	0.7887	0.0352	0.8368	1.0028	0.0369	1.0966	
V2O5	0.0291	0.0053	0.0307	0.0333	0.0054	0.0353	0.0379	0.0056	0.0414	
Cr2O3	0.0100	0.0015	0.0105	0.0110	0.0015	0.0117	0.0113	0.0016	0.0124	
MnO	0.0026	0.0024	0.0027	0.0118	0.0024	0.0125	0.0044	0.0025	0.0048	
Fe2O3	0.7851	0.0047	0.8280	2.6084	0.0299	2.7676	1.5806	0.0051	1.7284	
Co2O3	0.0009	0.0018	0.0010	0.0000	0.0018	0.0000	0.0009	0.0019	0.0010	
NiO	0.0121	0.0014	0.0128	0.0144	0.0014	0.0153	0.0133	0.0014	0.0145	
CuO	0.0117	0.0012	0.0123	0.0132	0.0012	0.0140	0.0126	0.0012	0.0138	
ZnO	0.0021	0.0010	0.0022	0.0032	0.0010	0.0034	0.0062	0.0010	0.0068	
Ga2O3	0.0027	0.0011	0.0028	0.0026	0.0011	0.0028	0.0049	0.0012	0.0054	
As2O3	0.0000	0.0010	0.0000	0.0000	0.0010	0.0000	0.0017	0.0010	0.0019	
Br	0.0005	0.0007	0.0005	0.0008	0.0007	0.0008	0.0004	0.0007	0.0004	
Rb2O	0.0078	0.0007	0.0082	0.0090	0.0007	0.0096	0.0108	0.0007	0.0118	
SrO	0.0078	0.0007	0.0082	0.0066	0.0007	0.0070	0.0069	0.0007	0.0075	
Y2O3	0.0027	0.0007	0.0029	0.0048	0.0008	0.0051	0.0014	0.0008	0.0015	
ZrO2	0.0393	0.0006	0.0415	0.0404	0.0006	0.0429	0.0229	0.0007	0.0250	
Nb2O5	0.0011	0.0007	0.0012	0.0011	0.0008	0.0012	0.0009	0.0008	0.0010	
MoO3	0.0005	0.0008	0.0005	0.0001	0.0008	0.0001	0.0000	0.0008	0.0000	
BaO	0.0407	0.0138	0.0429	0.0387	0.0142	0.0411	0.0313	0.0150	0.0342	
HfO2	0.0076	0.0037	0.0080	0.0038	0.0039	0.0040	0.0026	0.0039	0.0028	
PbO	0.0029	0.0019	0.0031	0.0030	0.0020	0.0032	0.0000	0.0020	0.0000	
ThO2	0.0009	0.0013	0.0009	0.0007	0.0014	0.0007	0.0000	0.0014	0.0000	
Ра	0.0021	0.0010	0.0022	0.0029	0.0011	0.0031	0.0035	0.0011	0.0038	
U308	0.0001	0.0002	0.0001	0.0003	0.0002	0.0003	0.0001	0.0002	0.0001	
TGA	5.1830			5.7510			8.5530			
Total	100.0000			100.0000			100.0000			

	18B			18C			18D			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.1439	0.0269	0.1553	0.1480	0.0242	0.1577	0.1992	0.0256	0.2183	
MgO	0.7188	0.0232	0.7756	0.5094	0.0221	0.5426	0.5952	0.0241	0.6522	
Al2O3	22.2254	0.0214	23.9805	19.1280	0.0197	20.3756	23.0337	0.0222	25.2385	
SiO2	64.7381	0.0313	69.8505	69.6867	0.0314	74.2319	62.9799	0.0313	69.0085	
P2O5	0.0490	0.0044	0.0529	0.0311	0.0042	0.0331	0.0304	0.0044	0.0333	
SO3	0.0665	0.0073	0.0718	0.0631	0.0072	0.0672	0.0821	0.0074	0.0900	
Cl	0.0000	0.0098	0.0000	0.0000	0.0095	0.0000	0.0000	0.0100	0.0000	
К2О	1.8298	0.0043	1.9743	1.6438	0.0041	1.7510	0.8576	0.0041	0.9397	
CaO	0.0839	0.0053	0.0905	0.1106	0.0051	0.1178	0.2476	0.0054	0.2713	
TiO2	1.0493	0.0363	1.1322	1.0961	0.0351	1.1676	1.1486	0.0366	1.2585	
V2O5	0.0382	0.0055	0.0412	0.0290	0.0053	0.0309	0.0363	0.0056	0.0398	
Cr2O3	0.0114	0.0016	0.0123	0.0101	0.0015	0.0108	0.0113	0.0016	0.0124	
MnO	0.0059	0.0024	0.0064	0.0060	0.0024	0.0064	0.0047	0.0025	0.0052	
Fe2O3	1.5443	0.0050	1.6663	1.2829	0.0046	1.3666	1.9194	0.0052	2.1031	
Co2O3	0.0015	0.0018	0.0016	0.0008	0.0018	0.0009	0.0011	0.0019	0.0012	
NiO	0.0166	0.0014	0.0179	0.0124	0.0014	0.0132	0.0129	0.0014	0.0141	
CuO	0.0131	0.0012	0.0141	0.0108	0.0012	0.0115	0.0146	0.0012	0.0160	
ZnO	0.0191	0.0010	0.0206	0.0059	0.0010	0.0063	0.0056	0.0011	0.0061	
Ga2O3	0.0054	0.0011	0.0058	0.0035	0.0011	0.0037	0.0066	0.0012	0.0072	
As2O3	0.0000	0.0010	0.0000	0.0000	0.0010	0.0000	0.0024	0.0011	0.0026	
Br	0.0003	0.0007	0.0003	0.0003	0.0007	0.0003	0.0003	0.0007	0.0003	
Rb2O	0.0119	0.0007	0.0128	0.0100	0.0007	0.0107	0.0085	0.0008	0.0093	
SrO	0.0072	0.0007	0.0078	0.0075	0.0007	0.0080	0.0106	0.0007	0.0116	
Y2O3	0.0060	0.0008	0.0065	0.0022	0.0007	0.0023	0.0000	0.0008	0.0000	
ZrO2	0.0264	0.0007	0.0285	0.0310	0.0006	0.0330	0.0249	0.0007	0.0273	
Nb2O5	0.0009	0.0008	0.0010	0.0023	0.0008	0.0024	0.0021	0.0008	0.0023	
MoO3	0.0001	0.0008	0.0001	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	
BaO	0.0536	0.0142	0.0578	0.0333	0.0143	0.0355	0.0172	0.0149	0.0189	
HfO2	0.0068	0.0039	0.0073	0.0059	0.0038	0.0063	0.0072	0.0040	0.0079	
PbO	0.0037	0.0020	0.0040	0.0033	0.0019	0.0035	0.0000	0.0021	0.0000	
ThO2	0.0003	0.0014	0.0003	0.0000	0.0013	0.0000	0.0001	0.0014	0.0001	
Ра	0.0034	0.0011	0.0037	0.0028	0.0010	0.0030	0.0032	0.0011	0.0035	
U308	0.0001	0.0002	0.0001	0.0002	0.0002	0.0002	0.0007	0.0002	0.0008	
TGA:	7.3190			6.1230			8.7360			
Total:	100.0000			100.0000			100.0000			

	18E			19A			19B		
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %
Na2O	0.2576	0.0236	0.2741	0.2256	0.0243	0.2369	0.2053	0.0256	0.2223
MgO	0.4122	0.0226	0.4386	0.6874	0.0201	0.7219	0.6618	0.0207	0.7167
Al2O3	17.5315	0.0190	18.6541	17.7192	0.0192	18.6075	21.4989	0.0212	23.2808
SiO2	69.7303	0.0317	74.1954	71.9326	0.0324	75.5388	60.8458	0.0306	65.8889
P2O5	0.0291	0.0043	0.0310	0.0307	0.0042	0.0322	0.0327	0.0042	0.0354
SO3	0.1636	0.0074	0.1741	0.2603	0.0074	0.2734	0.1730	0.0074	0.1873
Cl	0.0000	0.0093	0.0000	0.0054	0.0093	0.0057	0.0000	0.0098	0.0000
К2О	1.1550	0.0039	1.2290	1.3031	0.0040	1.3684	1.5320	0.0042	1.6590
CaO	0.0838	0.0052	0.0892	0.0771	0.0052	0.0810	0.0550	0.0054	0.0596
TiO2	0.9035	0.0351	0.9614	0.9003	0.0356	0.9454	1.0044	0.0358	1.0876
V2O5	0.0281	0.0054	0.0299	0.0284	0.0054	0.0298	0.0351	0.0056	0.0380
Cr2O3	0.0097	0.0015	0.0103	0.0091	0.0016	0.0096	0.0113	0.0016	0.0122
MnO	0.0188	0.0024	0.0200	0.0053	0.0024	0.0056	0.0244	0.0025	0.0264
Fe2O3	3.5330	0.0293	3.7592	1.8851	0.0049	1.9796	6.1209	0.0303	6.6282
Co2O3	0.0010	0.0018	0.0011	0.0000	0.0018	0.0000	0.0062	0.0019	0.0067
NiO	0.0137	0.0014	0.0146	0.0116	0.0014	0.0122	0.0122	0.0015	0.0132
CuO	0.0100	0.0012	0.0106	0.0105	0.0012	0.0110	0.0121	0.0012	0.0131
ZnO	0.0042	0.0010	0.0045	0.0032	0.0010	0.0034	0.0028	0.0011	0.0030
Ga2O3	0.0038	0.0011	0.0040	0.0038	0.0011	0.0040	0.0032	0.0012	0.0035
As2O3	0.0008	0.0010	0.0008	0.0000	0.0010	0.0000	0.0020	0.0011	0.0022
Br	0.0003	0.0007	0.0003	0.0009	0.0007	0.0009	0.0003	0.0007	0.0003
Rb2O	0.0094	0.0007	0.0100	0.0125	0.0007	0.0131	0.0099	0.0008	0.0107
SrO	0.0067	0.0007	0.0071	0.0070	0.0007	0.0074	0.0068	0.0007	0.0074
Y2O3	0.0012	0.0008	0.0013	0.0011	0.0008	0.0012	0.0004	0.0008	0.0004
ZrO2	0.0344	0.0007	0.0366	0.0362	0.0007	0.0380	0.0267	0.0007	0.0289
Nb2O5	0.0014	0.0008	0.0015	0.0022	0.0008	0.0023	0.0021	0.0008	0.0023
MoO3	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	0.0001	0.0009	0.0001
BaO	0.0314	0.0142	0.0334	0.0532	0.0138	0.0559	0.0489	0.0141	0.0530
HfO2	0.0040	0.0039	0.0043	0.0056	0.0038	0.0059	0.0062	0.0040	0.0067
PbO	0.0007	0.0020	0.0007	0.0059	0.0020	0.0062	0.0000	0.0021	0.0000
ThO2	0.0004	0.0014	0.0004	0.0001	0.0014	0.0001	0.0010	0.0014	0.0011
Ра	0.0023	0.0011	0.0025	0.0025	0.0011	0.0026	0.0042	0.0011	0.0045
U3O8	0.0000	0.0002	0.0000	0.0000	0.0002	0.0000	0.0005	0.0002	0.0005
TGA:	6.0180			4.7740			7.6540		
Total:	100.0000			100.0000			100.0000		

	19C				19D		19E		
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %
Na2O	0.4093	0.0243	0.4354	0.2670	0.0255	0.2940	0.1892	0.0267	0.2059
MgO	0.1016	0.0202	0.1081	0.5700	0.0212	0.6277	0.5120	0.0207	0.5573
Al2O3	18.5360	0.0194	19.7198	25.1507	0.0228	27.6969	24.1022	0.0220	26.2323
SiO2	70.4685	0.0320	74.9689	58.3534	0.0303	64.2609	62.4115	0.0309	67.9271
P2O5	0.0318	0.0042	0.0338	0.0343	0.0044	0.0378	0.0321	0.0043	0.0349
SO3	0.5094	0.0073	0.5419	0.1146	0.0073	0.1262	0.1924	0.0074	0.2094
Cl	0.0003	0.0095	0.0003	0.0000	0.0100	0.0000	0.0000	0.0100	0.0000
К2О	1.4843	0.0040	1.5791	0.8215	0.0039	0.9047	1.2042	0.0041	1.3106
CaO	0.0645	0.0052	0.0686	0.1813	0.0053	0.1997	0.0591	0.0053	0.0643
TiO2	1.0927	0.0357	1.1625	1.0094	0.0362	1.1116	0.9844	0.0363	1.0714
V2O5	0.0318	0.0054	0.0338	0.0351	0.0056	0.0386	0.0295	0.0056	0.0321
Cr2O3	0.0115	0.0015	0.0122	0.0112	0.0016	0.0123	0.0108	0.0016	0.0118
MnO	0.0049	0.0024	0.0052	0.0239	0.0025	0.0263	0.0044	0.0025	0.0048
Fe2O3	1.1094	0.0048	1.1803	4.1093	0.0303	4.5253	2.0238	0.0051	2.2027
Co2O3	0.0006	0.0018	0.0006	0.0032	0.0019	0.0035	0.0014	0.0019	0.0015
NiO	0.0117	0.0014	0.0125	0.0123	0.0014	0.0136	0.0131	0.0014	0.0143
CuO	0.0109	0.0012	0.0116	0.0143	0.0012	0.0158	0.0093	0.0012	0.0101
ZnO	0.0028	0.0010	0.0030	0.0054	0.0010	0.0059	0.0040	0.0010	0.0044
Ga2O3	0.0035	0.0011	0.0037	0.0057	0.0012	0.0063	0.0055	0.0012	0.0060
As2O3	0.0003	0.0010	0.0003	0.0002	0.0011	0.0002	0.0017	0.0010	0.0018
Br	0.0007	0.0007	0.0007	0.0007	0.0007	0.0008	0.0001	0.0007	0.0001
Rb2O	0.0101	0.0007	0.0107	0.0064	0.0008	0.0070	0.0107	0.0007	0.0117
SrO	0.0079	0.0007	0.0084	0.0098	0.0007	0.0108	0.0074	0.0007	0.0080
Y2O3	0.0025	0.0007	0.0027	0.0017	0.0008	0.0019	0.0007	0.0008	0.0008
ZrO2	0.0347	0.0006	0.0369	0.0204	0.0007	0.0225	0.0222	0.0007	0.0242
Nb2O5	0.0009	0.0008	0.0010	0.0025	0.0008	0.0027	0.0014	0.0008	0.0015
MoO3	0.0001	0.0008	0.0001	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000
BaO	0.0436	0.0140	0.0464	0.0176	0.0145	0.0194	0.0380	0.0143	0.0414
HfO2	0.0052	0.0038	0.0055	0.0059	0.0039	0.0065	0.0046	0.0039	0.0050
PbO	0.0024	0.0019	0.0026	0.0139	0.0085	0.0153	0.0000	0.0020	0.0000
ThO2	0.0000	0.0013	0.0000	0.0028	0.0020	0.0031	0.0000	0.0014	0.0000
Ра	0.0028	0.0010	0.0030	0.0001	0.0014	0.0001	0.0039	0.0011	0.0042
U308	0.0004	0.0002	0.0004	0.0024	0.0011	0.0026	0.0004	0.0002	0.0004
TGA:	6.0030			9.1930			8.1200		
Total:	100.0000			100.0000			100.0000		

	19F				19G		20A			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.4247	0.0249	0.4736	0.3041	0.0251	0.3267	0.064189	0.02378	0.069	
MgO	0.6171	0.0218	0.6882	0.0845	0.0197	0.0908	0.091073	0.01909	0.0979	
Al2O3	28.8088	0.0244	32.1276	18.7929	0.0198	20.1907	12.82506	0.01715	13.78639	
SiO2	55.1714	0.0302	61.5271	69.9469	0.0324	75.1495	70.56714	0.03211	75.85662	
P2O5	0.0363	0.0045	0.0405	0.0298	0.0044	0.0320	0.025117	0.00436	0.027	
SO3	0.3316	0.0077	0.3698	0.3735	0.0073	0.4013	3.913735	0.00854	4.207096	
Cl	0.0045	0.0100	0.0050	0.0000	0.0098	0.0000	0.002605	0.00951	0.0028	
К2О	0.6578	0.0041	0.7336	0.9674	0.0040	1.0394	0.390155	0.00375	0.4194	
CaO	0.0982	0.0055	0.1095	0.0595	0.0053	0.0639	3.0804	0.00553	3.311297	
TiO2	1.0168	0.0373	1.1339	0.7951	0.0359	0.8542	1.09074	0.0362	1.172499	
V2O5	0.0328	0.0057	0.0366	0.0226	0.0055	0.0243	0.018884	0.00552	0.0203	
Cr2O3	0.0121	0.0016	0.0135	0.0107	0.0016	0.0115	0.008372	0.00157	0.009	
MnO	0.0047	0.0025	0.0052	0.0059	0.0024	0.0063	0.003163	0.00242	0.0034	
Fe2O3	2.3448	0.0051	2.6149	1.5403	0.0049	1.6549	0.831661	0.00484	0.893999	
Co2O3	0.0032	0.0019	0.0036	0.0020	0.0018	0.0022	0.000558	0.00182	0.0006	
NiO	0.0152	0.0015	0.0170	0.0135	0.0014	0.0145	0.01107	0.00139	0.0119	
CuO	0.0122	0.0013	0.0136	0.0094	0.0012	0.0101	0.009675	0.0012	0.0104	
ZnO	0.0165	0.0011	0.0184	0.0117	0.0010	0.0126	0.002326	0.00102	0.0025	
Ga2O3	0.0078	0.0012	0.0087	0.0044	0.0011	0.0047	0.002233	0.00114	0.0024	
As2O3	0.0028	0.0011	0.0031	0.0009	0.0010	0.0010	0	0.00102	0	
Br	0.0005	0.0007	0.0006	0.0001	0.0007	0.0001	0.000558	0.00069	0.0006	
Rb2O	0.0060	0.0008	0.0067	0.0069	0.0007	0.0074	0.00214	0.00073	0.0023	
SrO	0.0070	0.0007	0.0078	0.0102	0.0007	0.0110	0.010047	0.0007	0.0108	
Y2O3	0.0010	0.0008	0.0011	0.0020	0.0008	0.0021	0.001395	0.00076	0.0015	
ZrO2	0.0169	0.0007	0.0189	0.0315	0.0007	0.0338	0.048281	0.00065	0.0519	
Nb2O5	0.0013	0.0008	0.0015	0.0013	0.0008	0.0014	0.002698	0.00077	0.0029	
MoO3	0.0000	0.0009	0.0000	0.0000	0.0008	0.0000	0	0.00081	0	
BaO	0.0114	0.0148	0.0127	0.0435	0.0139	0.0467	0.012466	0.0143	0.0134	
HfO2	0.0047	0.0041	0.0052	0.0036	0.0039	0.0039	0.007721	0.00386	0.0083	
PbO	0.0000	0.0021	0.0000	0.0000	0.0020	0.0000	0.002512	0.00198	0.0027	
ThO2	0.0000	0.0014	0.0000	0.0000	0.0014	0.0000	0.000558	0.00137	0.0006	
Ра	0.0018	0.0011	0.0020	0.0021	0.0011	0.0023	0.000465	0.00107	0.0005	
U3O8	0.0001	0.0002	0.0001	0.0007	0.0002	0.0007	0	0.0002	0	
TGA:	10.3300			6.9230			6.973			
Total:	100.0000			100.0000			100			

	20B			20C			21A			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.0853	0.0243	0.0919	0.0899	0.0245	0.0952	0.3609	0.0248	0.3896	
MgO	0.3234	0.0193	0.3483	0.0502	0.0187	0.0531	1.3730	0.0229	1.4821	
Al2O3	16.6236	0.0190	17.9053	16.5771	0.0187	17.5458	17.5116	0.0193	18.9029	
SiO2	69.1527	0.0320	74.4843	75.3146	0.0325	79.7157	63.0923	0.0306	68.1048	
P2O5	0.0274	0.0043	0.0295	0.0241	0.0043	0.0255	0.0703	0.0042	0.0759	
SO3	2.0448	0.0079	2.2025	0.1104	0.0072	0.1168	1.5484	0.0077	1.6714	
Cl	0.0000	0.0097	0.0000	0.0000	0.0098	0.0000	0.0010	0.0095	0.0011	
К2О	0.7390	0.0039	0.7960	0.7882	0.0038	0.8343	3.2257	0.0043	3.4820	
CaO	1.4612	0.0054	1.5739	0.0746	0.0052	0.0790	0.4108	0.0053	0.4434	
TiO2	0.9035	0.0356	0.9732	0.7011	0.0360	0.7421	0.6696	0.0373	0.7228	
V2O5	0.0241	0.0055	0.0260	0.0256	0.0053	0.0271	0.0197	0.0057	0.0213	
Cr2O3	0.0097	0.0016	0.0105	0.0087	0.0015	0.0092	0.0108	0.0015	0.0117	
MnO	0.0362	0.0024	0.0390	0.0042	0.0024	0.0044	0.0120	0.0024	0.0130	
Fe2O3	1.2512	0.0302	1.3477	0.6061	0.0047	0.6415	4.1518	0.0300	4.4817	
Co2O3	0.0038	0.0018	0.0041	0.0024	0.0018	0.0025	0.0019	0.0019	0.0021	
NiO	0.0221	0.0014	0.0238	0.0128	0.0014	0.0135	0.0114	0.0014	0.0123	
CuO	0.0092	0.0012	0.0099	0.0094	0.0012	0.0099	0.0113	0.0012	0.0122	
ZnO	0.0070	0.0010	0.0075	0.0029	0.0010	0.0031	0.0076	0.0010	0.0082	
Ga2O3	0.0023	0.0011	0.0025	0.0029	0.0011	0.0031	0.0043	0.0012	0.0046	
As2O3	0.0000	0.0010	0.0000	0.0005	0.0010	0.0005	0.0004	0.0010	0.0004	
Br	0.0000	0.0007	0.0000	0.0000	0.0007	0.0000	0.0003	0.0007	0.0003	
Rb2O	0.0038	0.0007	0.0041	0.0044	0.0007	0.0047	0.0173	0.0007	0.0187	
SrO	0.0031	0.0007	0.0033	0.0028	0.0007	0.0030	0.0145	0.0007	0.0156	
Y2O3	0.0043	0.0008	0.0046	0.0007	0.0007	0.0007	0.0002	0.0008	0.0002	
ZrO2	0.0674	0.0007	0.0726	0.0260	0.0006	0.0275	0.0196	0.0007	0.0212	
Nb2O5	0.0006	0.0008	0.0006	0.0009	0.0008	0.0009	0.0006	0.0008	0.0006	
MoO3	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	0.0006	0.0008	0.0006	
BaO	0.0274	0.0140	0.0295	0.0353	0.0138	0.0374	0.0790	0.0144	0.0853	
HfO2	0.0055	0.0039	0.0059	0.0014	0.0038	0.0015	0.0029	0.0039	0.0031	
PbO	0.0022	0.0020	0.0024	0.0003	0.0019	0.0003	0.0041	0.0020	0.0044	
ThO2	0.0010	0.0014	0.0011	0.0006	0.0013	0.0006	0.0002	0.0014	0.0002	
Ра	0.0000	0.0011	0.0000	0.0006	0.0011	0.0006	0.0057	0.0011	0.0062	
U308	0.0000	0.0002	0.0000	0.0005	0.0002	0.0005	0.0001	0.0002	0.0001	
TGA:	7.1580			5.5210			7.3600			
Total:	100.0000			100.0000			100.0000			

		21B		21C			21D			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.0896	0.0243	0.0940	0.0597	0.0226	0.0629	0.1408	0.0256	0.1536	
MgO	0.3181	0.0208	0.3337	0.3150	0.0196	0.3321	1.0437	0.0212	1.1386	
Al2O3	9.5770	0.0156	10.0455	11.8386	0.0152	12.4809	21.6221	0.0215	23.5879	
SiO2	81.4354	0.0334	85.4185	77.6473	0.0312	81.8599	57.9761	0.0306	63.2471	
P2O5	0.0269	0.0041	0.0282	0.0220	0.0038	0.0232	0.0349	0.0043	0.0381	
SO3	0.5497	0.0074	0.5766	0.5062	0.0065	0.5337	0.7400	0.0075	0.8073	
Cl	0.0009	0.0093	0.0009	0.0000	0.0083	0.0000	0.0000	0.0100	0.0000	
К2О	0.4620	0.0037	0.4846	0.3468	0.0033	0.3656	1.9084	0.0042	2.0819	
CaO	0.0582	0.0051	0.0610	0.1017	0.0045	0.1072	0.1739	0.0054	0.1897	
TiO2	0.7689	0.0347	0.8065	0.7914	0.0304	0.8343	0.6977	0.0363	0.7611	
V2O5	0.0176	0.0053	0.0185	0.0221	0.0047	0.0233	0.0357	0.0056	0.0389	
Cr2O3	0.0076	0.0015	0.0080	0.0069	0.0013	0.0073	0.0115	0.0016	0.0125	
MnO	0.0052	0.0024	0.0055	0.0048	0.0021	0.0051	0.0173	0.0025	0.0189	
Fe2O3	1.9022	0.0049	1.9952	3.0913	0.0043	3.2590	7.1262	0.0321	7.7741	
Co2O3	0.0004	0.0018	0.0004	0.0025	0.0016	0.0026	0.0017	0.0020	0.0019	
NiO	0.0123	0.0014	0.0129	0.0103	0.0012	0.0109	0.0133	0.0015	0.0145	
CuO	0.0123	0.0012	0.0129	0.0086	0.0010	0.0091	0.0124	0.0013	0.0135	
ZnO	0.0035	0.0010	0.0037	0.0045	0.0009	0.0047	0.0115	0.0011	0.0126	
Ga2O3	0.0026	0.0011	0.0027	0.0022	0.0010	0.0023	0.0047	0.0012	0.0051	
As2O3	0.0008	0.0010	0.0008	0.0000	0.0009	0.0000	0.0000	0.0011	0.0000	
Br	0.0006	0.0007	0.0006	0.0000	0.0006	0.0000	0.0003	0.0007	0.0003	
Rb2O	0.0033	0.0007	0.0035	0.0020	0.0006	0.0021	0.0124	0.0008	0.0135	
SrO	0.0039	0.0006	0.0041	0.0023	0.0006	0.0024	0.0071	0.0007	0.0077	
Y2O3	0.0039	0.0007	0.0041	0.0023	0.0007	0.0024	0.0009	0.0008	0.0010	
ZrO2	0.0520	0.0006	0.0545	0.0454	0.0006	0.0479	0.0208	0.0007	0.0227	
Nb2O5	0.0009	0.0007	0.0009	0.0014	0.0007	0.0015	0.0007	0.0008	0.0008	
MoO3	0.0000	0.0008	0.0000	0.0003	0.0007	0.0003	0.0000	0.0009	0.0000	
BaO	0.0097	0.0140	0.0102	0.0127	0.0121	0.0134	0.0382	0.0147	0.0417	
HfO2	0.0090	0.0037	0.0094	0.0050	0.0033	0.0053	0.0036	0.0041	0.0039	
PbO	0.0003	0.0019	0.0003	0.0000	0.0017	0.0000	0.0061	0.0021	0.0067	
ThO2	0.0006	0.0013	0.0006	0.0003	0.0012	0.0003	0.0000	0.0015	0.0000	
Ра	0.0012	0.0010	0.0013	0.0004	0.0009	0.0004	0.0039	0.0011	0.0043	
U3O8	0.0005	0.0002	0.0005	0.0000	0.0002	0.0000	0.0000	0.0002	0.0000	
TGA:	4.6630			5.1460			8.3340			
Total:	100.0000			100.0000			100.0000			

		21E			21F			21G			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %		
Na2O	0.1303	0.0252	0.1386	0.1542	0.0250	0.1631	0.1014	0.0248	0.1084		
MgO	0.8281	0.0203	0.8810	1.0295	0.0208	1.0888	0.5937	0.0202	0.6344		
Al2O3	18.9414	0.0200	20.1506	19.0504	0.0196	20.1470	17.7813	0.0194	19.0000		
SiO2	69.2606	0.0316	73.6823	67.9068	0.0315	71.8157	69.1207	0.0320	73.8580		
P2O5	0.0324	0.0042	0.0345	0.0565	0.0043	0.0598	0.0278	0.0043	0.0297		
SO3	0.2031	0.0074	0.2161	0.1732	0.0071	0.1832	0.3477	0.0073	0.3715		
Cl	0.0023	0.0094	0.0025	0.0063	0.0094	0.0067	0.0000	0.0096	0.0000		
К2О	1.8460	0.0041	1.9639	2.7990	0.0045	2.9601	1.2038	0.0040	1.2863		
CaO	0.0535	0.0052	0.0569	0.0963	0.0053	0.1018	0.0585	0.0052	0.0625		
TiO2	0.6064	0.0375	0.6451	0.8176	0.0352	0.8647	0.6924	0.0353	0.7399		
V2O5	0.0140	0.0057	0.0149	0.0335	0.0055	0.0354	0.0284	0.0054	0.0303		
Cr2O3	0.0116	0.0015	0.0123	0.0112	0.0016	0.0118	0.0109	0.0015	0.0116		
MnO	0.0085	0.0024	0.0090	0.0096	0.0024	0.0101	0.0116	0.0024	0.0124		
Fe2O3	1.9334	0.0303	2.0568	2.2475	0.0050	2.3769	3.4838	0.0305	3.7226		
Co2O3	0.0000	0.0019	0.0000	0.0000	0.0019	0.0000	0.0015	0.0019	0.0016		
NiO	0.0121	0.0014	0.0129	0.0122	0.0014	0.0129	0.0118	0.0014	0.0126		
CuO	0.0102	0.0012	0.0108	0.0106	0.0012	0.0112	0.0118	0.0012	0.0126		
ZnO	0.0033	0.0010	0.0035	0.0101	0.0010	0.0107	0.0058	0.0010	0.0062		
Ga2O3	0.0032	0.0011	0.0034	0.0032	0.0011	0.0034	0.0022	0.0012	0.0024		
As2O3	0.0016	0.0010	0.0017	0.0000	0.0010	0.0000	0.0024	0.0010	0.0026		
Br	0.0004	0.0007	0.0004	0.0000	0.0007	0.0000	0.0004	0.0007	0.0004		
Rb2O	0.0116	0.0007	0.0123	0.0168	0.0007	0.0178	0.0060	0.0007	0.0064		
SrO	0.0073	0.0007	0.0078	0.0107	0.0007	0.0113	0.0055	0.0007	0.0059		
Y2O3	0.0012	0.0008	0.0013	0.0009	0.0008	0.0009	0.0009	0.0008	0.0010		
ZrO2	0.0331	0.0007	0.0352	0.0255	0.0007	0.0270	0.0258	0.0007	0.0276		
Nb2O5	0.0008	0.0008	0.0008	0.0019	0.0008	0.0020	0.0011	0.0008	0.0012		
MoO3	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000		
BaO	0.0333	0.0144	0.0354	0.0568	0.0144	0.0601	0.0424	0.0137	0.0453		
HfO2	0.0055	0.0039	0.0059	0.0032	0.0039	0.0034	0.0047	0.0039	0.0050		
PbO	0.0000	0.0020	0.0000	0.0054	0.0020	0.0057	0.0000	0.0020	0.0000		
ThO2	0.0004	0.0014	0.0004	0.0016	0.0014	0.0017	0.0000	0.0014	0.0000		
Ра	0.0031	0.0011	0.0033	0.0059	0.0011	0.0062	0.0015	0.0011	0.0016		
U3O8	0.0004	0.0002	0.0004	0.0006	0.0002	0.0006	0.0000	0.0002	0.0000		
TGA:	6.0010			5.4430			6.4140				
Total:	100.0000			100.0000			100.0000				

	22A				22B		22C		
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %
Na2O	0.2815	0.0248	0.3026	0.2191	0.0255	0.2335	0.2379	0.0265	0.2589
MgO	0.1194	0.0204	0.1284	0.5586	0.0200	0.5953	0.0958	0.0211	0.1043
Al2O3	21.4569	0.0211	23.0660	17.6646	0.0193	18.8258	19.0810	0.0203	20.7686
SiO2	66.4070	0.0317	71.3869	70.8888	0.0322	75.5486	66.0348	0.0319	71.8753
P2O5	0.0343	0.0042	0.0369	0.0334	0.0042	0.0356	0.0485	0.0043	0.0528
SO3	0.2103	0.0073	0.2261	0.1023	0.0073	0.1090	0.0747	0.0075	0.0813
Cl	0.0042	0.0096	0.0045	0.0020	0.0097	0.0021	0.0000	0.0100	0.0000
К2О	1.7641	0.0043	1.8964	1.6601	0.0042	1.7692	1.2697	0.0042	1.3820
CaO	0.0722	0.0054	0.0776	0.0648	0.0052	0.0691	0.1291	0.0053	0.1405
TiO2	0.9342	0.0363	1.0043	0.8959	0.0356	0.9548	1.1222	0.0366	1.2214
V2O5	0.0296	0.0055	0.0318	0.0250	0.0055	0.0266	0.0300	0.0056	0.0326
Cr2O3	0.0102	0.0016	0.0110	0.0108	0.0016	0.0115	0.0090	0.0016	0.0098
MnO	0.0035	0.0024	0.0038	0.0038	0.0024	0.0041	0.0481	0.0024	0.0523
Fe2O3	1.5554	0.0050	1.6720	1.5687	0.0050	1.6718	3.5525	0.0304	3.8667
Co2O3	0.0018	0.0018	0.0019	0.0009	0.0018	0.0010	0.0044	0.0019	0.0048
NiO	0.0112	0.0014	0.0120	0.0122	0.0014	0.0130	0.0134	0.0014	0.0146
CuO	0.0111	0.0012	0.0119	0.0099	0.0012	0.0106	0.0116	0.0012	0.0126
ZnO	0.0040	0.0010	0.0043	0.0053	0.0010	0.0056	0.0084	0.0011	0.0091
Ga2O3	0.0039	0.0012	0.0042	0.0002	0.0012	0.0002	0.0037	0.0012	0.0040
As2O3	0.0000	0.0010	0.0000	0.0000	0.0010	0.0000	0.0007	0.0011	0.0008
Br	0.0006	0.0007	0.0006	0.0000	0.0007	0.0000	0.0002	0.0007	0.0002
Rb2O	0.0110	0.0007	0.0118	0.0104	0.0007	0.0111	0.0095	0.0008	0.0103
SrO	0.0073	0.0007	0.0079	0.0088	0.0007	0.0094	0.0080	0.0007	0.0087
Y2O3	0.0010	0.0008	0.0011	0.0012	0.0008	0.0013	0.0017	0.0008	0.0019
ZrO2	0.0245	0.0007	0.0263	0.0325	0.0007	0.0346	0.0297	0.0007	0.0323
Nb2O5	0.0012	0.0008	0.0013	0.0016	0.0008	0.0017	0.0019	0.0008	0.0021
MoO3	0.0001	0.0008	0.0001	0.0006	0.0008	0.0006	0.0002	0.0009	0.0002
BaO	0.0517	0.0143	0.0556	0.0375	0.0141	0.0400	0.0387	0.0143	0.0421
HfO2	0.0043	0.0039	0.0046	0.0046	0.0039	0.0049	0.0057	0.0040	0.0062
PbO	0.0020	0.0020	0.0022	0.0041	0.0020	0.0044	0.0006	0.0020	0.0006
ThO2	0.0009	0.0014	0.0010	0.0013	0.0014	0.0014	0.0000	0.0014	0.0000
Ра	0.0040	0.0011	0.0043	0.0030	0.0011	0.0032	0.0025	0.0011	0.0027
U308	0.0006	0.0002	0.0006	0.0000	0.0002	0.0000	0.0002	0.0002	0.0002
TGA:	6.9760			6.1680			8.1260		
Total:	100.0000			100.0000			100.0000		

	22D			22 E			22F		
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %
Na2O	0.3512	0.0263	0.3868	0.4189	0.0258	0.4528	0.3241	0.0259	0.3672
MgO	0.0994	0.0216	0.1095	0.0938	0.0207	0.1014	0.6324	0.0222	0.7165
Al2O3	26.2805	0.0236	28.9471	21.3556	0.0211	23.0859	29.8311	0.0252	33.7991
SiO2	60.0810	0.0312	66.1773	66.5976	0.0320	71.9935	52.8026	0.0299	59.8262
P2O5	0.0349	0.0046	0.0384	0.0327	0.0043	0.0354	0.0382	0.0045	0.0433
SO3	0.0784	0.0075	0.0864	0.3115	0.0073	0.3367	0.0746	0.0076	0.0845
Cl	0.0000	0.0103	0.0000	0.0000	0.0099	0.0000	0.0000	0.0103	0.0000
K2O	0.6796	0.0041	0.7486	0.7670	0.0039	0.8291	0.7225	0.0041	0.8186
CaO	0.0912	0.0054	0.1004	0.0957	0.0052	0.1035	0.2500	0.0056	0.2832
TiO2	0.9660	0.0376	1.0640	0.9286	0.0365	1.0038	1.0603	0.0383	1.2013
V2O5	0.0317	0.0057	0.0349	0.0295	0.0056	0.0319	0.0385	0.0059	0.0436
Cr2O3	0.0098	0.0016	0.0108	0.0101	0.0016	0.0109	0.0109	0.0016	0.0123
MnO	0.0056	0.0025	0.0062	0.0047	0.0024	0.0051	0.0051	0.0026	0.0058
Fe2O3	1.9634	0.0053	2.1626	1.7378	0.0051	1.8786	2.3576	0.0053	2.6712
Co2O3	0.0007	0.0019	0.0008	0.0013	0.0019	0.0014	0.0019	0.0020	0.0022
NiO	0.0139	0.0014	0.0153	0.0129	0.0014	0.0139	0.0131	0.0015	0.0148
CuO	0.0124	0.0013	0.0137	0.0105	0.0012	0.0114	0.0132	0.0013	0.0150
ZnO	0.0066	0.0011	0.0073	0.0044	0.0010	0.0048	0.0060	0.0011	0.0068
Ga2O3	0.0053	0.0012	0.0058	0.0050	0.0012	0.0054	0.0072	0.0012	0.0082
As2O3	0.0000	0.0011	0.0000	0.0006	0.0010	0.0007	0.0000	0.0011	0.0000
Br	0.0005	0.0007	0.0006	0.0003	0.0007	0.0003	0.0004	0.0007	0.0004
Rb2O	0.0052	0.0008	0.0057	0.0053	0.0007	0.0057	0.0057	0.0008	0.0065
SrO	0.0064	0.0007	0.0071	0.0070	0.0007	0.0076	0.0105	0.0007	0.0119
Y2O3	0.0015	0.0008	0.0017	0.0021	0.0008	0.0023	0.0000	0.0008	0.0000
ZrO2	0.0249	0.0007	0.0274	0.0326	0.0007	0.0352	0.0184	0.0007	0.0208
Nb2O5	0.0016	0.0008	0.0018	0.0012	0.0008	0.0013	0.0012	0.0008	0.0014
MoO3	0.0004	0.0009	0.0004	0.0002	0.0008	0.0002	0.0000	0.0009	0.0000
BaO	0.0269	0.0147	0.0296	0.0320	0.0142	0.0346	0.0235	0.0149	0.0266
HfO2	0.0025	0.0040	0.0028	0.0046	0.0039	0.0050	0.0042	0.0041	0.0048
PbO	0.0049	0.0021	0.0054	0.0006	0.0020	0.0007	0.0054	0.0021	0.0061
ThO2	0.0005	0.0014	0.0005	0.0000	0.0014	0.0000	0.0009	0.0015	0.0010
Ра	0.0009	0.0011	0.0010	0.0008	0.0011	0.0009	0.0004	0.0012	0.0005
U308	0.0001	0.0002	0.0001	0.0000	0.0002	0.0000	0.0002	0.0002	0.0002
TGA:	9.2120			7.4950			11.7400		
Total:	100.0000			100.0000			100.0000		

	23A			23B			23C			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.3782	0.0256	0.4103	0.2136	0.0256	0.2273	0.1383	0.0250	0.1442	
MgO	1.9499	0.0215	2.1156	0.4838	0.0193	0.5149	0.0438	0.0189	0.0457	
Al2O3	21.8923	0.0216	23.7528	15.9642	0.0187	16.9888	10.5662	0.0156	11.0135	
SiO2	59.2954	0.0304	64.3348	74.2745	0.0328	79.0415	81.4229	0.0335	84.8694	
P2O5	0.0442	0.0043	0.0480	0.0337	0.0043	0.0359	0.0230	0.0041	0.0240	
SO3	1.2112	0.0078	1.3141	0.2248	0.0074	0.2392	0.4579	0.0071	0.4773	
Cl	0.0011	0.0099	0.0012	0.0000	0.0095	0.0000	0.0000	0.0095	0.0000	
К2О	2.5055	0.0046	2.7184	0.2014	0.0036	0.2143	0.1663	0.0035	0.1733	
CaO	0.7694	0.0056	0.8348	0.1015	0.0051	0.1080	0.2930	0.0051	0.3054	
TiO2	0.7648	0.0371	0.8298	1.1116	0.0356	1.1829	1.2700	0.0345	1.3238	
V2O5	0.0373	0.0056	0.0405	0.0374	0.0054	0.0398	0.0245	0.0054	0.0255	
Cr2O3	0.0100	0.0016	0.0109	0.0079	0.0015	0.0084	0.0077	0.0015	0.0080	
MnO	0.0149	0.0025	0.0162	0.0028	0.0024	0.0030	0.0083	0.0023	0.0087	
Fe2O3	3.1259	0.0053	3.3916	1.1886	0.0049	1.2649	1.4066	0.0048	1.4661	
Co2O3	0.0041	0.0019	0.0044	0.0010	0.0018	0.0011	0.0002	0.0018	0.0002	
NiO	0.0143	0.0014	0.0155	0.0143	0.0014	0.0152	0.0114	0.0014	0.0119	
CuO	0.0146	0.0012	0.0158	0.0123	0.0012	0.0131	0.0106	0.0012	0.0110	
ZnO	0.0107	0.0011	0.0116	0.0029	0.0010	0.0031	0.0018	0.0010	0.0019	
Ga2O3	0.0046	0.0012	0.0050	0.0044	0.0011	0.0047	0.0020	0.0011	0.0021	
As2O3	0.0041	0.0011	0.0044	0.0051	0.0010	0.0054	0.0019	0.0010	0.0020	
Br	0.0006	0.0007	0.0007	0.0008	0.0007	0.0008	0.0001	0.0007	0.0001	
Rb2O	0.0160	0.0008	0.0174	0.0008	0.0007	0.0008	0.0012	0.0007	0.0012	
SrO	0.0088	0.0007	0.0096	0.0037	0.0007	0.0039	0.0029	0.0006	0.0030	
Y2O3	0.0008	0.0008	0.0009	0.0036	0.0008	0.0038	0.0027	0.0007	0.0028	
ZrO2	0.0165	0.0007	0.0179	0.0524	0.0006	0.0558	0.0568	0.0006	0.0592	
Nb2O5	0.0016	0.0008	0.0017	0.0012	0.0008	0.0013	0.0024	0.0007	0.0025	
MoO3	0.0000	0.0009	0.0000	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	
BaO	0.0611	0.0144	0.0663	0.0156	0.0139	0.0166	0.0101	0.0137	0.0105	
HfO2	0.0041	0.0040	0.0045	0.0045	0.0038	0.0048	0.0056	0.0038	0.0058	
PbO	0.0000	0.0021	0.0000	0.0000	0.0020	0.0000	0.0000	0.0019	0.0000	
ThO2	0.0003	0.0014	0.0003	0.0001	0.0013	0.0001	0.0001	0.0013	0.0001	
Ра	0.0046	0.0011	0.0050	0.0002	0.0011	0.0002	0.0007	0.0010	0.0007	
U3O8	0.0000	0.0002	0.0000	0.0004	0.0002	0.0004	0.0001	0.0002	0.0001	
TGA	7.8330			6.0310			4.0610			
Total	100.0000			100.0000			100.0000			

	23D			23E			23F			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.1938	0.0263	0.2143	0.1984	0.0262	0.2160	0.1687	0.0252	0.1804	
MgO	0.9086	0.0217	1.0048	0.5032	0.0210	0.5477	0.0640	0.0203	0.0684	
Al2O3	19.2873	0.0207	21.3285	23.9446	0.0224	26.0630	19.1181	0.0201	20.4461	
SiO2	48.4933	0.0282	53.6253	62.9281	0.0312	68.4954	70.8562	0.0324	75.7780	
P2O5	0.0660	0.0045	0.0730	0.0345	0.0043	0.0375	0.0253	0.0044	0.0271	
SO3	0.2224	0.0074	0.2459	0.1340	0.0073	0.1459	0.1283	0.0073	0.1372	
Cl	0.0000	0.0097	0.0000	0.0036	0.0098	0.0039	0.0000	0.0098	0.0000	
К2О	1.4975	0.0043	1.6560	1.1050	0.0041	1.2028	0.9493	0.0040	1.0152	
CaO	0.1809	0.0053	0.2000	0.0557	0.0054	0.0606	0.0395	0.0053	0.0422	
TiO2	0.8425	0.0367	0.9317	0.8265	0.0368	0.8996	0.6622	0.0352	0.7082	
V2O5	0.0477	0.0055	0.0527	0.0264	0.0056	0.0287	0.0261	0.0054	0.0279	
Cr2O3	0.0119	0.0016	0.0132	0.0110	0.0016	0.0120	0.0089	0.0016	0.0095	
MnO	0.0695	0.0026	0.0768	0.0030	0.0025	0.0033	0.0028	0.0024	0.0030	
Fe2O3	18.4704	0.0352	20.4251	1.9725	0.0049	2.1470	1.3603	0.0049	1.4548	
Co2O3	0.0029	0.0023	0.0032	0.0012	0.0019	0.0013	0.0011	0.0018	0.0012	
NiO	0.0120	0.0016	0.0133	0.0123	0.0014	0.0134	0.0110	0.0014	0.0118	
CuO	0.0123	0.0014	0.0136	0.0094	0.0012	0.0102	0.0119	0.0012	0.0127	
ZnO	0.0017	0.0012	0.0019	0.0033	0.0010	0.0036	0.0038	0.0010	0.0041	
Ga2O3	0.0040	0.0013	0.0044	0.0046	0.0012	0.0050	0.0032	0.0011	0.0034	
As2O3	0.0000	0.0012	0.0000	0.0000	0.0010	0.0000	0.0000	0.0010	0.0000	
Br	0.0004	0.0008	0.0004	0.0000	0.0007	0.0000	0.0005	0.0007	0.0005	
Rb2O	0.0077	0.0009	0.0085	0.0071	0.0007	0.0077	0.0059	0.0007	0.0063	
SrO	0.0096	0.0008	0.0106	0.0059	0.0007	0.0064	0.0030	0.0007	0.0032	
Y2O3	0.0008	0.0009	0.0009	0.0006	0.0008	0.0006	0.0011	0.0008	0.0012	
ZrO2	0.0180	0.0008	0.0199	0.0234	0.0007	0.0255	0.0244	0.0006	0.0261	
Nb2O5	0.0005	0.0009	0.0005	0.0011	0.0008	0.0012	0.0005	0.0008	0.0005	
MoO3	0.0000	0.0010	0.0000	0.0000	0.0008	0.0000	0.0002	0.0008	0.0002	
BaO	0.0413	0.0144	0.0457	0.0457	0.0144	0.0497	0.0227	0.0144	0.0243	
HfO2	0.0043	0.0045	0.0048	0.0044	0.0039	0.0048	0.0031	0.0038	0.0033	
PbO	0.0065	0.0023	0.0072	0.0030	0.0020	0.0033	0.0011	0.0020	0.0012	
ThO2	0.0000	0.0016	0.0000	0.0013	0.0014	0.0014	0.0000	0.0013	0.0000	
Ра	0.0033	0.0012	0.0036	0.0023	0.0011	0.0025	0.0019	0.0011	0.0020	
U3O8	0.0001	0.0002	0.0010	0.0000	0.0002	0.0000	0.0000	0.0002	0.0000	
TGA:	9.5700			8.1280			6.4950			
Total:	100.0000			100.0000			100.0000			

		23G		24A			24B			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.2923	0.0277	0.3143	0.2066	0.0249	0.2239	0.1616	0.0267	0.1760	
MgO	1.1042	0.0214	1.1872	0.0221	0.0196	0.0240	0.0363	0.0201	0.0395	
Al2O3	23.0970	0.0220	24.8336	18.8894	0.0201	20.4735	20.6505	0.0209	22.4953	
SiO2	61.3237	0.0304	65.9345	69.3773	0.0326	75.1951	66.8591	0.0321	72.8321	
P2O5	0.0588	0.0045	0.0632	0.0250	0.0041	0.0271	0.0195	0.0044	0.0212	
SO3	0.1123	0.0074	0.1207	0.5837	0.0077	0.6327	0.3023	0.0074	0.3293	
Cl	0.0009	0.0097	0.0010	0.0000	0.0099	0.0000	0.0000	0.0098	0.0000	
К2О	3.5142	0.0048	3.7784	0.0682	0.0036	0.0739	0.1181	0.0037	0.1286	
CaO	0.1786	0.0055	0.1920	0.1108	0.0052	0.1201	0.0473	0.0053	0.0515	
TiO2	0.8727	0.0369	0.9383	1.4385	0.0364	1.5591	0.9704	0.0351	1.0571	
V2O5	0.0478	0.0056	0.0514	0.0249	0.0055	0.0270	0.0252	0.0056	0.0274	
Cr2O3	0.0136	0.0016	0.0146	0.0067	0.0016	0.0073	0.0079	0.0016	0.0086	
MnO	0.0065	0.0025	0.0070	0.0027	0.0024	0.0029	0.0063	0.0024	0.0069	
Fe2O3	2.1321	0.0052	2.2924	1.3886	0.0050	1.5050	2.5158	0.0052	2.7405	
Co2O3	0.0019	0.0019	0.0020	0.0023	0.0018	0.0025	0.0000	0.0019	0.0000	
NiO	0.0166	0.0014	0.0178	0.0116	0.0014	0.0126	0.0115	0.0014	0.0125	
CuO	0.0362	0.0012	0.0389	0.0115	0.0012	0.0125	0.0095	0.0012	0.0103	
ZnO	0.0184	0.0011	0.0198	0.0014	0.0010	0.0015	0.0021	0.0010	0.0023	
Ga2O3	0.0039	0.0012	0.0042	0.0075	0.0011	0.0081	0.0053	0.0012	0.0058	
As2O3	0.0056	0.0010	0.0060	0.0000	0.0010	0.0000	0.0022	0.0010	0.0024	
Br	0.0003	0.0007	0.0003	0.0004	0.0007	0.0004	0.0006	0.0007	0.0006	
Rb2O	0.0174	0.0007	0.0187	0.0006	0.0007	0.0006	0.0011	0.0007	0.0012	
SrO	0.0154	0.0007	0.0166	0.0028	0.0007	0.0030	0.0020	0.0007	0.0022	
Y2O3	0.0038	0.0008	0.0041	0.0019	0.0008	0.0021	0.0011	0.0008	0.0012	
ZrO2	0.0148	0.0007	0.0159	0.0567	0.0007	0.0615	0.0363	0.0007	0.0395	
Nb2O5	0.0003	0.0008	0.0003	0.0034	0.0008	0.0037	0.0020	0.0008	0.0022	
MoO3	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	
BaO	0.1063	0.0150	0.1143	0.0062	0.0143	0.0067	0.0000	0.0143	0.0000	
HfO2	0.0045	0.0040	0.0048	0.0066	0.0039	0.0071	0.0043	0.0039	0.0047	
PbO	0.0000	0.0020	0.0000	0.0052	0.0020	0.0056	0.0000	0.0020	0.0000	
ThO2	0.0006	0.0014	0.0006	0.0000	0.0014	0.0000	0.0007	0.0014	0.0008	
Ра	0.0066	0.0011	0.0071	0.000	0.0011	0.0000	0.0002	0.0011	0.0002	
U3O8	0.0000	0.0002	0.0000	0.0005	0.0002	0.0005	0.0001	0.0002	0.0001	
TGA:	6.9930			7.7370			8.2010			
Total:	100.0000			100.0000			100.0000			

	24C			24D			24E			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.2629	0.0269	0.2818	0.1904	0.0248	0.2035	0.1943	0.0248	0.2091	
MgO	0.4732	0.0205	0.5072	0.4274	0.0198	0.4569	0.8320	0.0211	0.8952	
Al2O3	18.6688	0.0199	20.0099	16.2032	0.0185	17.3215	20.9529	0.0213	22.5457	
SiO2	69.6020	0.0316	74.6018	69.5161	0.0319	74.3139	61.1395	0.0305	65.7874	
P2O5	0.0345	0.0041	0.0370	0.0395	0.0043	0.0422	0.0443	0.0044	0.0477	
SO3	0.5160	0.0073	0.5531	0.7026	0.0075	0.7511	0.3578	0.0075	0.3850	
Cl	0.0000	0.0097	0.0000	0.0050	0.0092	0.0053	0.0021	0.0097	0.0023	
К2О	0.9441	0.0039	1.0119	1.0891	0.0039	1.1643	2.4887	0.0045	2.6779	
CaO	0.0344	0.0052	0.0369	0.0414	0.0051	0.0443	0.0612	0.0053	0.0659	
TiO2	0.7677	0.0362	0.8229	0.8151	0.0350	0.8713	0.8586	0.0364	0.9239	
V2O5	0.0287	0.0055	0.0308	0.0363	0.0053	0.0388	0.0517	0.0055	0.0556	
Cr2O3	0.0096	0.0016	0.0103	0.0115	0.0015	0.0123	0.0143	0.0016	0.0154	
MnO	0.0234	0.0024	0.0251	0.0122	0.0024	0.0130	0.0138	0.0025	0.0148	
Fe2O3	1.7998	0.0299	1.9291	4.3189	0.0311	4.6170	5.7687	0.0319	6.2072	
Co2O3	0.0019	0.0018	0.0020	0.0007	0.0019	0.0007	0.0021	0.0020	0.0023	
NiO	0.0130	0.0014	0.0139	0.0103	0.0014	0.0110	0.0135	0.0015	0.0145	
CuO	0.0104	0.0012	0.0112	0.0107	0.0012	0.0114	0.0123	0.0013	0.0132	
ZnO	0.0026	0.0010	0.0028	0.0025	0.0010	0.0027	0.0116	0.0011	0.0125	
Ga2O3	0.0038	0.0011	0.0041	0.0031	0.0012	0.0033	0.0047	0.0012	0.0051	
As2O3	0.0049	0.0010	0.0052	0.0032	0.0010	0.0034	0.0019	0.0011	0.0020	
Br	0.0000	0.0007	0.0000	0.0000	0.0007	0.0000	0.0005	0.0007	0.0005	
Rb2O	0.0063	0.0007	0.0068	0.0060	0.0007	0.0064	0.0154	0.0008	0.0166	
SrO	0.0180	0.0007	0.0193	0.0076	0.0007	0.0081	0.0071	0.0007	0.0076	
Y2O3	0.0012	0.0008	0.0013	0.0021	0.0008	0.0022	0.0006	0.0008	0.0006	
ZrO2	0.0313	0.0007	0.0335	0.0427	0.0007	0.0457	0.0206	0.0007	0.0222	
Nb2O5	0.0014	0.0008	0.0015	0.0015	0.0008	0.0016	0.0018	0.0008	0.0019	
MoO3	0.0003	0.0008	0.0003	0.0001	0.0008	0.0001	0.0002	0.0009	0.0002	
BaO	0.0314	0.0140	0.0337	0.0267	0.0141	0.0285	0.0516	0.0146	0.0555	
HfO2	0.0050	0.0038	0.0054	0.0030	0.0039	0.0032	0.0042	0.0040	0.0045	
PbO	0.0000	0.0020	0.0000	0.0032	0.0020	0.0034	0.0000	0.0021	0.0000	
ThO2	0.0000	0.0014	0.0000	0.0000	0.0014	0.0000	0.0020	0.0014	0.0021	
Pa	0.0007	0.0011	0.0007	0.0016	0.0011	0.0017	0.0051	0.0011	0.0055	
U308	0.0005	0.0002	0.0005	0.0002	0.0002	0.0002	0.0000	0.0002	0.0000	
TGA:	6.7020			6.4560			7.0650			
Total:	100.0000			100.0000			100.0000			

		24F		24G			24H			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.3817	0.0304	0.4868	0.3817	0.0267	0.4033	0.3829	0.0252	0.4137	
MgO	0.5209	0.0236	0.6643	1.0978	0.0207	1.1600	0.1708	0.0210	0.1845	
Al2O3	15.3073	0.0218	19.5222	18.7446	0.0196	19.8072	21.2335	0.0209	22.9405	
SiO2	56.4400	0.0345	71.9807	67.6595	0.0311	71.4952	65.4890	0.0315	70.7538	
P2O5	0.0786	0.0054	0.1002	0.0377	0.0043	0.0398	0.0321	0.0042	0.0347	
SO3	0.2127	0.0089	0.2713	0.5341	0.0074	0.5644	0.7694	0.0076	0.8312	
Cl	0.0000	0.0117	0.0000	0.0029	0.0094	0.0031	0.0081	0.0094	0.0087	
К2О	0.5121	0.0047	0.6531	3.5359	0.0047	3.7364	2.3962	0.0045	2.5888	
CaO	0.0623	0.0063	0.0795	0.0237	0.0052	0.0250	0.0287	0.0053	0.0310	
TiO2	2.1545	0.0444	2.7478	0.9904	0.0359	1.0465	0.7912	0.0366	0.8548	
V2O5	0.0652	0.0068	0.0831	0.0375	0.0054	0.0396	0.0303	0.0055	0.0327	
Cr2O3	0.0172	0.0019	0.0219	0.0124	0.0015	0.0131	0.0112	0.0016	0.0121	
MnO	0.0280	0.0029	0.0357	0.0182	0.0024	0.0192	0.0182	0.0024	0.0197	
Fe2O3	2.3543	0.0061	3.0025	1.3549	0.0299	1.4317	1.0391	0.0302	1.1226	
Co2O3	0.0053	0.0022	0.0068	0.0023	0.0018	0.0024	0.0022	0.0018	0.0024	
NiO	0.0229	0.0017	0.0292	0.0153	0.0014	0.0162	0.0139	0.0014	0.0150	
CuO	0.0407	0.0015	0.0519	0.0238	0.0012	0.0252	0.0152	0.0012	0.0164	
ZnO	0.0156	0.0013	0.0199	0.0171	0.0010	0.0181	0.0118	0.0010	0.0128	
Ga2O3	0.0050	0.0014	0.0064	0.0044	0.0011	0.0047	0.0031	0.0011	0.0033	
As2O3	0.0000	0.0013	0.0000	0.0000	0.0010	0.0000	0.0034	0.0010	0.0037	
Br	0.0000	0.0009	0.0000	0.0006	0.0007	0.0006	0.0000	0.0007	0.0000	
Rb2O	0.0029	0.0009	0.0037	0.0205	0.0007	0.0217	0.0132	0.0007	0.0143	
SrO	0.0165	0.0008	0.0210	0.0086	0.0007	0.0091	0.0081	0.0007	0.0087	
Y2O3	0.0140	0.0009	0.0179	0.0011	0.0008	0.0012	0.0011	0.0008	0.0012	
ZrO2	0.0505	0.0008	0.0644	0.0206	0.0006	0.0218	0.0190	0.0007	0.0205	
Nb2O5	0.0024	0.0010	0.0030	0.0015	0.0008	0.0016	0.0006	0.0008	0.0007	
MoO3	0.0000	0.0010	0.0000	0.0004	0.0008	0.0004	0.0000	0.0008	0.0000	
BaO	0.0854	0.0182	0.1089	0.0716	0.0146	0.0757	0.0586	0.0143	0.0633	
HfO2	0.0035	0.0048	0.0045	0.0044	0.0038	0.0046	0.0041	0.0039	0.0044	
PbO	0.0072	0.0024	0.0092	0.0038	0.0019	0.0040	0.0000	0.0020	0.0000	
ThO2	0.0000	0.0017	0.0000	0.0004	0.0014	0.0004	0.0000	0.0014	0.0000	
Ра	0.0006	0.0013	0.0008	0.0074	0.0011	0.0078	0.0038	0.0011	0.0041	
U3O8	0.0027	0.0002	0.0034	0.0000	0.0002	0.0000	0.0003	0.0002	0.0003	
TGA:	21.5900			5.3650			7.4410			
Total:	100.0000			100.0000			100.0000			

		241		26A			26B			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.4528	0.0263	0.4872	0.0532	0.0236	0.0552	0.073287	0.02686	0.0803	
MgO	1.0654	0.0207	1.1463	0.5573	0.0189	0.5779	1.147774	0.0211	1.2576	
Al2O3	18.3339	0.0197	19.7268	9.5062	0.0150	9.8576	17.97586	0.01978	19.6959	
SiO2	66.7163	0.0315	71.7850	83.0900	0.0337	86.1617	59.91742	0.03087	65.6507	
P2O5	0.0324	0.0042	0.0349	0.0293	0.0044	0.0304	0.03459	0.00449	0.0379	
SO3	1.0345	0.0077	1.1131	0.0711	0.0073	0.0737	4.392133	0.00903	4.8124	
Cl	0.0000	0.0095	0.0000	0.0000	0.0095	0.0000	0	0.01015	0	
К2О	2.6272	0.0042	2.8268	0.9554	0.0039	0.9907	1.943531	0.00427	2.1295	
CaO	0.0457	0.0052	0.0492	0.0564	0.0051	0.0585	2.868431	0.00579	3.1429	
TiO2	0.7594	0.0359	0.8171	0.8516	0.0347	0.8831	0.704855	0.03803	0.7723	
V2O5	0.0338	0.0054	0.0364	0.0224	0.0053	0.0232	0.025372	0.00572	0.0278	
Cr2O3	0.0109	0.0016	0.0117	0.0074	0.0015	0.0077	0.009401	0.00162	0.0103	
MnO	0.0226	0.0024	0.0243	0.0029	0.0024	0.0030	0.00429	0.00254	0.0047	
Fe2O3	1.6016	0.0048	1.7233	1.0819	0.0048	1.1219	1.957038	0.00531	2.1443	
Co2O3	0.0030	0.0018	0.0032	0.0025	0.0018	0.0026	0.000821	0.00193	0.0009	
NiO	0.0144	0.0014	0.0155	0.0122	0.0014	0.0127	0.012777	0.00146	0.014	
CuO	0.0152	0.0012	0.0164	0.0105	0.0012	0.0109	0.012595	0.00126	0.0138	
ZnO	0.0130	0.0010	0.0140	0.0021	0.0010	0.0022	0.006936	0.00107	0.0076	
Ga2O3	0.0025	0.0011	0.0027	0.0039	0.0011	0.0040	0.005476	0.00119	0.006	
As2O3	0.0021	0.0010	0.0023	0.0000	0.0010	0.0000	0	0.00108	0	
Br	0.0000	0.0007	0.0000	0.0000	0.0007	0.0000	0	0.00073	0	
Rb2O	0.0123	0.0007	0.0132	0.0077	0.0007	0.0080	0.015789	0.00077	0.0173	
SrO	0.0087	0.0007	0.0094	0.0043	0.0007	0.0045	0.028202	0.0007	0.0309	
Y2O3	0.0022	0.0008	0.0024	0.0031	0.0007	0.0032	0.000548	0.00081	0.0006	
ZrO2	0.0217	0.0007	0.0234	0.0591	0.0006	0.0613	0.020535	0.00069	0.0225	
Nb2O5	0.0005	0.0008	0.0005	0.0016	0.0008	0.0017	0.001369	0.00081	0.0015	
MoO3	0.0001	0.0008	0.0001	0.0000	0.0008	0.0000	0	0.00086	0	
BaO	0.1028	0.0137	0.1106	0.0307	0.0136	0.0318	0.091632	0.01459	0.1004	
HfO2	0.0000	0.0039	0.0000	0.0077	0.0038	0.0080	0.004928	0.00408	0.0054	
PbO	0.000	0.0020	0.000	0.0020	0.0019	0.0021	0.00502	0.00207	0.0055	
ThO2	0.0001	0.0014	0.0001	0.000	0.0013	0.0000	0.000821	0.00144	0.0009	
Ра	0.0037	0.0011	0.0040	0.0022	0.0010	0.0023	0.00502	0.00113	0.0055	
U3O8	0.0001	0.0002	0.0001	0.0001	0.0002	0.0001	0.000548	0.00021	0.0006	
TGA:	7.0610			3.5650			8.733			
Total:	100.0000			100.0000			100.0000			

		28A			28 B				
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %
Na2O	0.0268	0.0217	0.0275	0.0486	0.0226	0.0504	0.0482	0.0226	0.0499
MgO	0.2932	0.0197	0.3007	0.3590	0.0207	0.3724	0.2943	0.0200	0.3044
Al2O3	6.2187	0.0133	6.3784	10.3064	0.0154	10.6924	11.0895	0.0153	11.4708
SiO2	88.3294	0.0340	90.5982	82.8278	0.0336	85.9299	82.2301	0.0326	85.0575
P2O5	0.0224	0.0042	0.0230	0.0239	0.0042	0.0248	0.0233	0.0040	0.0241
SO3	0.0543	0.0068	0.0557	0.0662	0.0070	0.0687	0.0796	0.0067	0.0823
Cl	0.0000	0.0091	0.0000	0.0070	0.0091	0.0073	0.0000	0.0090	0.0000
К2О	0.3931	0.0036	0.4032	0.5905	0.0037	0.6126	1.3902	0.0039	1.4380
CaO	0.1589	0.0049	0.1630	0.2120	0.0051	0.2199	0.1079	0.0049	0.1116
TiO2	1.1020	0.0342	1.1303	0.8887	0.0338	0.9220	0.3842	0.0330	0.3974
V2O5	0.0145	0.0053	0.0149	0.0177	0.0053	0.0184	0.0109	0.0050	0.0113
Cr2O3	0.0069	0.0015	0.0071	0.0067	0.0015	0.0069	0.0070	0.0014	0.0072
MnO	0.0022	0.0023	0.0023	0.0042	0.0023	0.0044	0.0066	0.0022	0.0068
Fe2O3	0.7409	0.0046	0.7599	0.9088	0.0047	0.9428	0.8874	0.0046	0.9179
Co2O3	0.0013	0.0017	0.0013	0.0008	0.0018	0.0008	0.0004	0.0017	0.0004
NiO	0.0112	0.0013	0.0115	0.0113	0.0013	0.0117	0.0109	0.0013	0.0113
CuO	0.0102	0.0011	0.0105	0.0109	0.0012	0.0113	0.0088	0.0011	0.0091
ZnO	0.0015	0.0010	0.0015	0.0018	0.0010	0.0019	0.0017	0.0009	0.0018
Ga2O3	0.0026	0.0011	0.0027	0.0017	0.0011	0.0018	0.0014	0.0011	0.0014
As2O3	0.0000	0.0010	0.0000	0.0000	0.0010	0.0000	0.0000	0.0009	0.0000
Br	0.0001	0.0007	0.0001	0.0002	0.0007	0.0002	0.0002	0.0006	0.0002
Rb2O	0.0024	0.0007	0.0025	0.0043	0.0007	0.0045	0.0066	0.0007	0.0068
SrO	0.0034	0.0006	0.0035	0.0033	0.0006	0.0034	0.0035	0.0006	0.0036
Y2O3	0.0047	0.0007	0.0048	0.0027	0.0007	0.0028	0.0016	0.0007	0.0017
ZrO2	0.0565	0.0006	0.0580	0.0547	0.0006	0.0568	0.0371	0.0006	0.0384
Nb2O5	0.0025	0.0007	0.0026	0.0046	0.0007	0.0048	0.0003	0.0007	0.0003
MoO3	0.0001	0.0008	0.0001	0.0000	0.0008	0.0000	0.0002	0.0008	0.0002
BaO	0.0124	0.0134	0.0127	0.0164	0.0137	0.0170	0.0334	0.0130	0.0346
HfO2	0.0091	0.0036	0.0093	0.0045	0.0037	0.0047	0.0052	0.0036	0.0054
PbO	0.0036	0.0018	0.0037	0.0044	0.0019	0.0046	0.0025	0.0018	0.0026
ThO2	0.0008	0.0013	0.0008	0.0003	0.0013	0.0003	0.0006	0.0013	0.0006
Ра	0.0012	0.0010	0.0012	0.0000	0.0010	0.0000	0.0023	0.0010	0.0024
U3O8	0.0003	0.0002	0.0003	0.0005	0.0002	0.0005	0.0000	0.0002	0.0000
TGA:	2.5040			3.6100			3.3240		
Total:	100.0000			100.0000			100.0000		

		28D		28E			29A			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.1166	0.0242	0.1224	0.1229	0.0262	0.1364	0.0368	0.0224	0.0378	
MgO	1.0076	0.0218	1.0581	5.1450	0.0253	5.7105	0.0443	0.0173	0.0455	
Al2O3	13.9832	0.0175	14.6838	14.2566	0.0180	15.8235	7.1445	0.0139	7.3415	
SiO2	73.1434	0.0316	76.8079	56.5192	0.0297	62.7308	87.9987	0.0338	90.4257	
P2O5	0.0736	0.0043	0.0773	0.1472	0.0046	0.1634	0.0193	0.0040	0.0198	
SO3	0.6522	0.0074	0.6849	0.1479	0.0073	0.1641	0.0625	0.0071	0.0642	
Cl	0.0003	0.0097	0.0003	0.0000	0.0099	0.0000	0.0000	0.0092	0.0000	
К2О	2.7546	0.0045	2.8926	3.4739	0.0049	3.8557	0.4077	0.0036	0.4189	
CaO	0.4975	0.0053	0.5224	4.3791	0.0060	4.8604	0.0434	0.0050	0.0446	
TiO2	0.6146	0.0355	0.6454	0.5670	0.0371	0.6293	0.8314	0.0346	0.8543	
V2O5	0.0259	0.0054	0.0272	0.0205	0.0057	0.0228	0.0083	0.0053	0.0085	
Cr2O3	0.0092	0.0015	0.0097	0.0086	0.0016	0.0095	0.0064	0.0014	0.0066	
MnO	0.0074	0.0024	0.0078	0.0880	0.0025	0.0977	0.0024	0.0023	0.0025	
Fe2O3	2.1627	0.0050	2.2711	5.0374	0.0055	5.5910	0.5563	0.0046	0.5716	
Co2O3	0.0000	0.0018	0.0000	0.0026	0.0020	0.0029	0.0004	0.0017	0.0004	
NiO	0.0124	0.0014	0.0130	0.0143	0.0015	0.0159	0.0112	0.0013	0.0115	
CuO	0.0130	0.0012	0.0137	0.0115	0.0013	0.0128	0.0097	0.0011	0.0100	
ZnO	0.0085	0.0010	0.0089	0.0120	0.0011	0.0133	0.0016	0.0010	0.0016	
Ga2O3	0.0000	0.0011	0.0000	0.0026	0.0012	0.0029	0.0018	0.0011	0.0019	
As2O3	0.0003	0.0010	0.0003	0.0038	0.0011	0.0042	0.0000	0.0010	0.0000	
Br	0.0002	0.0007	0.0002	0.0000	0.0007	0.0000	0.0000	0.0007	0.0000	
Rb2O	0.0152	0.0007	0.0160	0.0191	0.0008	0.0212	0.0032	0.0007	0.0033	
SrO	0.0098	0.0007	0.0103	0.0102	0.0007	0.0113	0.0018	0.0006	0.0018	
Y2O3	0.0033	0.0008	0.0035	0.0023	0.0008	0.0026	0.0030	0.0007	0.0031	
ZrO2	0.0424	0.0007	0.0445	0.0183	0.0007	0.0203	0.0852	0.0006	0.0876	
Nb2O5	0.0013	0.0008	0.0014	0.0005	0.0008	0.0006	0.0055	0.0007	0.0057	
MoO3	0.0000	0.0008	0.0000	0.0000	0.0009	0.0000	0.0000	0.0008	0.0000	
BaO	0.0545	0.0141	0.0572	0.0765	0.0145	0.0849	0.0107	0.0135	0.0110	
HfO2	0.0078	0.0038	0.0082	0.0035	0.0042	0.0039	0.0063	0.0037	0.0065	
PbO	0.0034	0.0020	0.0036	0.0000	0.0021	0.0000	0.0015	0.0019	0.0015	
ThO2	0.0008	0.0014	0.0008	0.0000	0.0015	0.0000	0.0000	0.0013	0.0000	
Ра	0.0063	0.0011	0.0066	0.0071	0.0012	0.0079	0.0002	0.0010	0.0002	
U308	0.0009	0.0002	0.0009	0.0003	0.0002	0.0003	0.0000	0.0002	0.0000	
TGA:	4.7710			9.9020			2.6840			
Total:	100.0000			100.0000			100.0000			

		29B		29C			29D		
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %
Na2O	0.0607	0.0242	0.0634	0.0706	0.0262	0.0751	0.0817	0.0260	0.0884
MgO	0.5529	0.0191	0.5776	0.9236	0.0212	0.9831	0.6267	0.0207	0.6784
Al2O3	14.6837	0.0176	15.3389	21.3155	0.0208	22.6883	21.2256	0.0209	22.9774
SiO2	76.2219	0.0326	79.6225	66.0285	0.0315	70.2812	66.4325	0.0320	71.9153
P2O5	0.0257	0.0041	0.0268	0.0265	0.0043	0.0282	0.0398	0.0045	0.0431
SO3	0.0633	0.0070	0.0661	0.0575	0.0074	0.0612	0.0971	0.0072	0.1051
Cl	0.0042	0.0094	0.0044	0.0004	0.0095	0.0004	0.0000	0.0100	0.0000
К2О	1.7737	0.0041	1.8528	2.7944	0.0043	2.9744	1.2965	0.0040	1.4035
CaO	0.0931	0.0051	0.0973	0.1266	0.0054	0.1348	0.1834	0.0054	0.1985
TiO2	0.9533	0.0349	0.9958	0.7028	0.0358	0.7481	0.7633	0.0364	0.8263
V2O5	0.0221	0.0053	0.0231	0.0256	0.0055	0.0273	0.0391	0.0055	0.0423
Cr2O3	0.0082	0.0015	0.0086	0.0105	0.0016	0.0112	0.0136	0.0016	0.0147
MnO	0.0058	0.0024	0.0061	0.0054	0.0024	0.0057	0.0091	0.0025	0.0099
Fe2O3	1.1292	0.0048	1.1796	1.7309	0.0049	1.8424	1.4232	0.0051	1.5407
Co2O3	0.0006	0.0018	0.0006	0.0004	0.0019	0.0004	0.0030	0.0019	0.0032
NiO	0.0110	0.0014	0.0115	0.0116	0.0014	0.0124	0.0133	0.0014	0.0144
CuO	0.0094	0.0012	0.0098	0.0091	0.0012	0.0097	0.0155	0.0012	0.0168
ZnO	0.0024	0.0010	0.0025	0.0028	0.0010	0.0030	0.0055	0.0010	0.0059
Ga2O3	0.0047	0.0011	0.0049	0.0030	0.0012	0.0032	0.0033	0.0012	0.0036
As2O3	0.0003	0.0010	0.0003	0.0006	0.0010	0.0006	0.0000	0.0010	0.0000
Br	0.0000	0.0007	0.0000	0.0004	0.0007	0.0004	0.0004	0.0007	0.0004
Rb2O	0.0113	0.0007	0.0118	0.0191	0.0007	0.0203	0.0099	0.0007	0.0107
SrO	0.0065	0.0006	0.0068	0.0074	0.0007	0.0079	0.0114	0.0007	0.0123
Y2O3	0.0023	0.0007	0.0024	0.0013	0.0008	0.0014	0.0009	0.0008	0.0010
ZrO2	0.0435	0.0006	0.0454	0.0253	0.0007	0.0269	0.0340	0.0007	0.0368
Nb2O5	0.0021	0.0008	0.0022	0.0007	0.0008	0.0007	0.0017	0.0008	0.0018
MoO3	0.0003	0.0008	0.0003	0.0000	0.0008	0.0000	0.0001	0.0008	0.0001
BaO	0.0270	0.0140	0.0282	0.0352	0.0146	0.0375	0.0303	0.0143	0.0328
HfO2	0.0042	0.0038	0.0044	0.0050	0.0039	0.0053	0.0042	0.0039	0.0046
PbO	0.0008	0.0019	0.0008	0.0005	0.0020	0.0005	0.0069	0.0020	0.0075
ThO2	0.0004	0.0013	0.0004	0.0003	0.0014	0.0003	0.0009	0.0014	0.0010
Ра	0.0042	0.0010	0.0044	0.0072	0.0011	0.0077	0.0032	0.0011	0.0035
U3O8	0.0003	0.0002	0.0003	0.0004	0.0002	0.0004	0.0000	0.0002	0.0000
TGA:	4.2710			6.0510			7.6240		
Total:	100.0000			100.0000			100.0000		

		29E			29F		30A			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.0587	0.0246	0.0628	0.1259	0.0266	0.1356	0.2882	0.0259	0.3116	
MgO	0.0862	0.0197	0.0922	0.6310	0.0196	0.6797	0.6046	0.0227	0.6536	
Al2O3	17.9489	0.0197	19.1969	18.9049	0.0201	20.3642	19.2867	0.0199	20.8502	
SiO2	72.0986	0.0326	77.1117	69.2998	0.0324	74.6492	64.8064	0.0308	70.0602	
P2O5	0.0304	0.0044	0.0325	0.0539	0.0044	0.0581	0.0347	0.0043	0.0375	
SO3	0.1118	0.0074	0.1196	0.1118	0.0074	0.1204	2.1823	0.0080	2.3592	
Cl	0.0000	0.0098	0.0000	0.0000	0.0099	0.0000	0.0000	0.0097	0.0000	
К2О	1.0291	0.0040	1.1007	1.3608	0.0041	1.4658	1.5203	0.0040	1.6435	
CaO	0.1411	0.0053	0.1509	0.1153	0.0053	0.1242	1.3404	0.0054	1.4491	
TiO2	0.6804	0.0360	0.7277	0.7051	0.0364	0.7595	0.8084	0.0361	0.8739	
V2O5	0.0299	0.0055	0.0320	0.0281	0.0056	0.0303	0.0371	0.0056	0.0401	
Cr2O3	0.0117	0.0016	0.0125	0.0125	0.0016	0.0135	0.0119	0.0016	0.0129	
MnO	0.0053	0.0025	0.0057	0.0065	0.0025	0.0070	0.0157	0.0024	0.0170	
Fe2O3	1.1302	0.0051	1.2088	1.3123	0.0050	1.4136	1.4202	0.0302	1.5353	
Co2O3	0.0030	0.0018	0.0032	0.0053	0.0018	0.0057	0.0000	0.0018	0.0000	
NiO	0.0133	0.0014	0.0142	0.0196	0.0014	0.0211	0.0136	0.0014	0.0147	
CuO	0.0112	0.0012	0.0120	0.0110	0.0012	0.0118	0.0120	0.0012	0.0130	
ZnO	0.0085	0.0010	0.0091	0.0393	0.0010	0.0423	0.0019	0.0010	0.0020	
Ga2O3	0.0029	0.0011	0.0031	0.0041	0.0012	0.0044	0.0033	0.0011	0.0036	
As2O3	0.0030	0.0010	0.0032	0.0029	0.0010	0.0031	0.0000	0.0010	0.0000	
Br	0.0005	0.0007	0.0005	0.0006	0.0007	0.0007	0.0003	0.0007	0.0003	
Rb2O	0.0064	0.0007	0.0068	0.0085	0.0007	0.0092	0.0084	0.0007	0.0091	
SrO	0.0074	0.0007	0.0079	0.0096	0.0007	0.0103	0.0101	0.0007	0.0109	
Y2O3	0.0013	0.0008	0.0014	0.0035	0.0008	0.0038	0.0014	0.0008	0.0015	
ZrO2	0.0427	0.0007	0.0457	0.0340	0.0007	0.0366	0.0313	0.0007	0.0338	
Nb2O5	0.0013	0.0008	0.0014	0.0007	0.0008	0.0008	0.0006	0.0008	0.0007	
MoO3	0.0002	0.0008	0.0002	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	
BaO	0.0266	0.0142	0.0285	0.0162	0.0150	0.0175	0.0482	0.0142	0.0521	
HfO2	0.0061	0.0039	0.0065	0.0071	0.0039	0.0076	0.0052	0.0039	0.0056	
PbO	0.0000	0.0020	0.0000	0.0000	0.0020	0.0000	0.0038	0.0020	0.0041	
ThO2	0.0005	0.0014	0.0005	0.0003	0.0014	0.0003	0.0010	0.0014	0.0011	
Ра	0.0017	0.0011	0.0018	0.0034	0.0011	0.0037	0.0028	0.0011	0.0030	
U3O8	0.0000	0.0002	0.0000	0.0000	0.0002	0.0000	0.0003	0.0002	0.0003	
TGA:	6.5010			7.1660			7.4990			
Total:	100.0000			100.0000			100.0000			

		30B		30C			30D			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.2341	0.0249	0.2527	0.1152	0.0240	0.1223	0.1150	0.0244	0.1227	
MgO	0.7005	0.0230	0.7563	0.2916	0.0219	0.3096	0.4187	0.0227	0.4465	
Al2O3	20.9153	0.0210	22.5818	17.5767	0.0188	18.6639	18.3939	0.0195	19.6170	
SiO2	63.5922	0.0310	68.6592	72.9054	0.0326	77.4148	69.1229	0.0316	73.7193	
P2O5	0.0388	0.0044	0.0419	0.0298	0.0041	0.0316	0.0351	0.0044	0.0374	
SO3	1.0712	0.0078	1.1565	0.0960	0.0071	0.1019	0.0822	0.0071	0.0877	
Cl	0.0000	0.0098	0.0000	0.0000	0.0095	0.0000	0.0000	0.0098	0.0000	
К2О	1.9100	0.0043	2.0622	1.0101	0.0039	1.0726	1.4476	0.0041	1.5439	
CaO	0.6266	0.0055	0.6765	0.2763	0.0052	0.2934	0.0948	0.0052	0.1011	
TiO2	0.8654	0.0368	0.9343	0.6763	0.0370	0.7181	0.7929	0.0354	0.8456	
V2O5	0.0440	0.0055	0.0475	0.0206	0.0058	0.0219	0.0412	0.0053	0.0439	
Cr2O3	0.0128	0.0016	0.0138	0.0103	0.0015	0.0109	0.0118	0.0015	0.0126	
MnO	0.0383	0.0025	0.0413	0.0384	0.0024	0.0408	0.1038	0.0024	0.1107	
Fe2O3	2.4185	0.0308	2.6112	1.0034	0.0298	1.0655	2.9587	0.0050	3.1555	
Co2O3	0.0012	0.0019	0.0013	0.0008	0.0018	0.0008	0.0021	0.0019	0.0022	
NiO	0.0150	0.0014	0.0162	0.0151	0.0014	0.0160	0.0176	0.0014	0.0188	
CuO	0.0118	0.0012	0.0127	0.0103	0.0012	0.0109	0.0134	0.0012	0.0143	
ZnO	0.0028	0.0010	0.0030	0.0025	0.0010	0.0027	0.0099	0.0010	0.0106	
Ga2O3	0.0016	0.0012	0.0017	0.0022	0.0011	0.0023	0.0028	0.0011	0.0030	
As2O3	0.0007	0.0010	0.0008	0.0000	0.0010	0.0000	0.0023	0.0010	0.0025	
Br	0.0002	0.0007	0.0002	0.0006	0.0007	0.0006	0.0007	0.0007	0.0007	
Rb2O	0.0107	0.0007	0.0116	0.0059	0.0007	0.0063	0.0084	0.0007	0.0090	
SrO	0.0075	0.0007	0.0081	0.0057	0.0007	0.0060	0.0061	0.0007	0.0065	
Y2O3	0.0025	0.0008	0.0027	0.0004	0.0008	0.0004	0.0022	0.0008	0.0023	
ZrO2	0.0273	0.0007	0.0295	0.0297	0.0006	0.0315	0.0318	0.0007	0.0339	
Nb2O5	0.0012	0.0008	0.0013	0.0003	0.0008	0.0003	0.0015	0.0008	0.0016	
MoO3	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	
BaO	0.0579	0.0144	0.0625	0.0421	0.0138	0.0447	0.0410	0.0142	0.0437	
HfO2	0.0031	0.0040	0.0033	0.0033	0.0038	0.0035	0.0038	0.0039	0.0041	
PbO	0.0040	0.0020	0.0043	0.0043	0.0019	0.0046	0.0000	0.0020	0.0000	
ThO2	0.0014	0.0014	0.0015	0.0000	0.0013	0.0000	0.0005	0.0014	0.0005	
Ра	0.0037	0.0011	0.0040	0.0014	0.0011	0.0015	0.0023	0.0011	0.0024	
U3O8	0.0000	0.0002	0.0000	0.0006	0.0002	0.0006	0.0000	0.0002	0.0000	
TGA	7.3800			5.8250			6.2350			
Total	100.0000			100.0000			100.0000			

	30E			32A			32B			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.0947	0.0245	0.1000	0.0587	0.0182	0.0628	0.0850	0.0248	0.0924	
MgO	0.3196	0.0216	0.3373	0.3382	0.0220	0.3617	0.4132	0.0239	0.4493	
Al2O3	15.9309	0.0184	16.8143	16.7117	0.0191	17.8735	22.6397	0.0211	24.6161	
SiO2	73.1537	0.0320	77.2103	72.7247	0.0326	77.7805	64.5639	0.0312	70.2002	
P2O5	0.0409	0.0044	0.0432	0.0275	0.0043	0.0294	0.0216	0.0044	0.0235	
SO3	0.0683	0.0072	0.0721	0.0689	0.0073	0.0737	0.1626	0.0075	0.1768	
Cl	0.0000	0.0095	0.0000	0.0026	0.0074	0.0028	0.0029	0.0097	0.0031	
К2О	1.5274	0.0040	1.6121	0.1757	0.0037	0.1879	0.6718	0.0039	0.7305	
CaO	0.0966	0.0051	0.1020	0.2871	0.0053	0.3071	0.0825	0.0052	0.0897	
TiO2	0.6870	0.0353	0.7251	1.2576	0.0354	1.3450	0.8942	0.0363	0.9723	
V2O5	0.0344	0.0053	0.0363	0.0213	0.0055	0.0228	0.0338	0.0056	0.0368	
Cr2O3	0.0111	0.0015	0.0117	0.0084	0.0015	0.0090	0.0093	0.0016	0.0101	
MnO	0.0524	0.0024	0.0553	0.0081	0.0024	0.0087	0.0075	0.0025	0.0082	
Fe2O3	2.5476	0.0050	2.6889	1.6851	0.0302	1.8022	2.2837	0.0307	2.4831	
Co2O3	0.0053	0.0018	0.0056	0.0011	0.0018	0.0012	0.0002	0.0019	0.0002	
NiO	0.0175	0.0014	0.0185	0.0139	0.0014	0.0149	0.0131	0.0014	0.0142	
CuO	0.0110	0.0012	0.0116	0.0111	0.0012	0.0119	0.0113	0.0012	0.0123	
ZnO	0.0120	0.0010	0.0127	0.0069	0.0010	0.0074	0.0028	0.0010	0.0030	
Ga2O3	0.0044	0.0011	0.0046	0.0049	0.0011	0.0052	0.0053	0.0012	0.0058	
As2O3	0.0012	0.0010	0.0013	0.0021	0.0010	0.0022	0.0014	0.0010	0.0015	
Br	0.0002	0.0007	0.0002	0.0000	0.0007	0.0000	0.0002	0.0007	0.0002	
Rb2O	0.0079	0.0007	0.0083	0.0011	0.0007	0.0012	0.0049	0.0007	0.0053	
SrO	0.0077	0.0007	0.0081	0.0025	0.0007	0.0027	0.0044	0.0007	0.0048	
Y2O3	0.0018	0.0008	0.0019	0.0024	0.0008	0.0026	0.0000	0.0008	0.0000	
ZrO2	0.0436	0.0006	0.0460	0.0554	0.0007	0.0593	0.0294	0.0007	0.0320	
Nb2O5	0.0001	0.0008	0.0001	0.0051	0.0008	0.0055	0.0013	0.0008	0.0014	
MoO3	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	
BaO	0.0624	0.0140	0.0659	0.0132	0.0140	0.0141	0.0186	0.0142	0.0202	
HfO2	0.0048	0.0038	0.0051	0.0043	0.0039	0.0046	0.0037	0.0039	0.0040	
PbO	0.0000	0.0020	0.0000	0.0000	0.0020	0.0000	0.0000	0.0020	0.0000	
ThO2	0.0000	0.0013	0.0000	0.0001	0.0014	0.0001	0.0006	0.0014	0.0007	
Ра	0.0010	0.0011	0.0011	0.0000	0.0011	0.0000	0.0021	0.0011	0.0023	
U3O8	0.0004	0.0002	0.0004	0.0000	0.0002	0.0000	0.0000	0.0002	0.0000	
TGA:	5.2540			6.5000			8.0290			
Total:	100.0000			100.0000			100.0000			

		32C			32D			34A	
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %
Na2O	0.1612	0.0252	0.1742	0.0928	0.0267	0.0991	0.0124	0.0227	0.0126
MgO	0.6458	0.0236	0.6979	0.3972	0.0222	0.4241	0.2818	0.0195	0.2875
Al2O3	22.3540	0.0213	24.1558	18.3107	0.0192	19.5514	5.9315	0.0130	6.0514
SiO2	61.2489	0.0306	66.1857	67.9216	0.0314	72.5240	89.1108	0.0342	90.9118
P2O5	0.0469	0.0044	0.0507	0.0311	0.0043	0.0332	0.0217	0.0040	0.0221
SO3	0.2929	0.0074	0.3165	0.2369	0.0072	0.2529	0.0500	0.0069	0.0510
Cl	0.0000	0.0098	0.0000	0.0011	0.0095	0.0012	0.0000	0.0093	0.0000
K2O	2.1878	0.0043	2.3641	1.4984	0.0040	1.5999	0.5282	0.0037	0.5389
CaO	0.0368	0.0052	0.0398	0.0406	0.0052	0.0434	0.1110	0.0050	0.1132
TiO2	0.8989	0.0362	0.9713	0.8218	0.0354	0.8775	1.1277	0.0337	1.1505
V2O5	0.0421	0.0055	0.0455	0.0383	0.0054	0.0409	0.0188	0.0052	0.0192
Cr2O3	0.0111	0.0016	0.0120	0.0147	0.0015	0.0157	0.0059	0.0015	0.0060
MnO	0.0283	0.0024	0.0306	0.0263	0.0024	0.0281	0.0028	0.0023	0.0029
Fe2O3	4.4039	0.0314	4.7588	4.0807	0.0305	4.3572	0.6641	0.0046	0.6775
Co2O3	0.0002	0.0019	0.0002	0.0009	0.0019	0.0010	0.0004	0.0017	0.0004
NiO	0.0178	0.0014	0.0192	0.0155	0.0014	0.0166	0.0111	0.0013	0.0113
CuO	0.0115	0.0012	0.0124	0.0168	0.0012	0.0179	0.0137	0.0011	0.0140
ZnO	0.0119	0.0011	0.0129	0.0107	0.0010	0.0114	0.0024	0.0010	0.0024
Ga2O3	0.0048	0.0012	0.0052	0.0030	0.0011	0.0032	0.0021	0.0011	0.0021
As2O3	0.0000	0.0011	0.0000	0.0000	0.0010	0.0000	0.0001	0.0010	0.0001
Br	0.0000	0.0007	0.0000	0.0001	0.0007	0.0001	0.0010	0.0007	0.0010
Rb2O	0.0117	0.0008	0.0126	0.0074	0.0007	0.0079	0.0054	0.0007	0.0055
SrO	0.0099	0.0007	0.0107	0.0159	0.0007	0.0170	0.0046	0.0006	0.0047
Y2O3	0.0022	0.0008	0.0024	0.0018	0.0008	0.0019	0.0023	0.0007	0.0023
ZrO2	0.0216	0.0007	0.0233	0.0343	0.0007	0.0366	0.0755	0.0006	0.0770
Nb2O5	0.0019	0.0008	0.0021	0.0006	0.0008	0.0006	0.0028	0.0007	0.0029
MoO3	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000
BaO	0.0585	0.0143	0.0632	0.0269	0.0143	0.0287	0.0205	0.0134	0.0209
HfO2	0.0028	0.0040	0.0030	0.0044	0.0039	0.0047	0.0078	0.0036	0.0080
PbO	0.0056	0.0020	0.0061	0.0014	0.0020	0.0015	0.0009	0.0019	0.0009
ThO2	0.0014	0.0014	0.0015	0.0001	0.0014	0.0001	0.0000	0.0013	0.0000
Ра	0.0040	0.0011	0.0043	0.0019	0.0011	0.0020	0.0012	0.0010	0.0012
U3O8	0.0000	0.0002		0.0002	0.0002	0.0002	0.0007	0.0002	0.0007
TGA:	7.4590			6.3460			1.9810		
Total:	100.0000			100.0000			100.0000		

		34B			34C		34D		
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %
Na2O	0.0429	0.0241	0.0457	0.0184	0.0224	0.0192	0.0653	0.0242	0.0698
MgO	0.4801	0.0222	0.5109	0.3345	0.0211	0.3498	0.8180	0.0234	0.8746
Al2O3	19.2036	0.0194	20.4350	14.3441	0.0175	15.0006	22.4793	0.0213	24.0336
SiO2	70.5511	0.0321	75.0752	78.3401	0.0327	81.9251	64.6526	0.0309	69.1228
P2O5	0.0269	0.0042	0.0286	0.0242	0.0040	0.0253	0.0317	0.0042	0.0339
SO3	0.0390	0.0073	0.0415	0.0600	0.0072	0.0627	0.0459	0.0070	0.0491
Cl	0.0016	0.0094	0.0017	0.0074	0.0093	0.0077	0.0118	0.0094	0.0126
К2О	1.6102	0.0042	1.7134	1.1771	0.0039	1.2310	2.7498	0.0045	2.9399
CaO	0.1966	0.0053	0.2092	0.1124	0.0051	0.1175	0.2668	0.0053	0.2853
TiO2	0.6564	0.0359	0.6985	0.4246	0.0345	0.4440	0.7768	0.0351	0.8305
V2O5	0.0120	0.0056	0.0128	0.0128	0.0053	0.0134	0.0293	0.0054	0.0313
Cr2O3	0.0085	0.0015	0.0090	0.0068	0.0015	0.0071	0.0105	0.0015	0.0112
MnO	0.0039	0.0024	0.0041	0.0042	0.0023	0.0044	0.0056	0.0024	0.0060
Fe2O3	1.0170	0.0049	1.0822	0.6702	0.0048	0.7009	1.4429	0.0050	1.5427
Co2O3	0.0002	0.0018	0.0002	0.0000	0.0018	0.0000	0.0016	0.0018	0.0017
NiO	0.0103	0.0014	0.0110	0.0117	0.0013	0.0122	0.0114	0.0014	0.0122
CuO	0.0101	0.0012	0.0108	0.0097	0.0012	0.0101	0.0100	0.0012	0.0107
ZnO	0.0019	0.0010	0.0020	0.0005	0.0010	0.0005	0.0025	0.0010	0.0027
Ga2O3	0.0031	0.0011	0.0033	0.0021	0.0011	0.0022	0.0039	0.0011	0.0042
As2O3	0.0000	0.0010	0.0000	0.0009	0.0010	0.0009	0.0000	0.0010	0.0000
Br	0.0008	0.0007	0.0008	0.0006	0.0007	0.0006	0.0000	0.0007	0.0000
Rb2O	0.0109	0.0007	0.0116	0.0069	0.0007	0.0072	0.0186	0.0007	0.0199
SrO	0.0070	0.0007	0.0074	0.0033	0.0006	0.0035	0.0089	0.0007	0.0095
Y2O3	0.0015	0.0007	0.0016	0.0011	0.0007	0.0011	0.0012	0.0008	0.0013
ZrO2	0.0369	0.0006	0.0393	0.0266	0.0006	0.0278	0.0238	0.0006	0.0254
Nb2O5	0.0009	0.0008	0.0010	0.0002	0.0007	0.0002	0.0016	0.0008	0.0017
MoO3	0.0002	0.0008	0.0002	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000
BaO	0.0296	0.0139	0.0315	0.0142	0.0136	0.0148	0.0497	0.0140	0.0531
HfO2	0.0047	0.0038	0.0050	0.0062	0.0037	0.0065	0.0019	0.0038	0.0020
PbO	0.0031	0.0019	0.0033	0.0006	0.0019	0.0006	0.0032	0.0019	0.0034
ThO2	0.0000	0.0013	0.0000	0.0000	0.0013	0.0000	0.0011	0.0014	0.0012
Ра	0.0028	0.0010	0.0030	0.0030	0.0010	0.0031	0.0069	0.0011	0.0074
U3O8	0.0002	0.0002	0.0002	0.0000	0.0002	0.0000	0.0004	0.0002	0.0004
TGA:	6.0260			4.3760			6.4670		
Total:	100.0000			100.0000			100.0000		

		34E			34F			34G		
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.0859	0.0252	0.0927	0.0933	0.0247	0.1010	0.0478	0.0240	0.0507	
MgO	0.6782	0.0232	0.7315	0.5692	0.0231	0.6161	0.3208	0.0221	0.3401	
Al2O3	21.0722	0.0209	22.7280	21.5914	0.0214	23.3688	17.3950	0.0189	18.4420	
SiO2	65.5301	0.0315	70.6790	65.2338	0.0311	70.6040	73.6921	0.0321	78.1274	
P2O5	0.0324	0.0044	0.0349	0.0285	0.0044	0.0309	0.0275	0.0042	0.0292	
SO3	0.1244	0.0073	0.1342	0.1056	0.0072	0.1143	0.0708	0.0069	0.0751	
Cl	0.0000	0.0099	0.0000	0.0017	0.0097	0.0018	0.0000	0.0095	0.0000	
К2О	1.9883	0.0043	2.1445	1.8048	0.0042	1.9534	1.1826	0.0040	1.2538	
CaO	0.5706	0.0054	0.6154	0.5094	0.0053	0.5513	0.1432	0.0052	0.1518	
TiO2	0.9768	0.0364	1.0536	0.9125	0.0359	0.9876	0.6773	0.0346	0.7181	
V2O5	0.0412	0.0055	0.0444	0.0479	0.0053	0.0518	0.0213	0.0053	0.0226	
Cr2O3	0.0125	0.0016	0.0135	0.0121	0.0015	0.0131	0.0102	0.0015	0.0108	
MnO	0.0037	0.0025	0.0040	0.0050	0.0024	0.0054	0.0033	0.0024	0.0035	
Fe2O3	1.4458	0.0050	1.5594	1.3122	0.0050	1.4202	0.6125	0.0048	0.6494	
Co2O3	0.0000	0.0019	0.0000	0.0001	0.0018	0.0001	0.0012	0.0018	0.0013	
NiO	0.0122	0.0014	0.0132	0.0138	0.0014	0.0149	0.0117	0.0013	0.0124	
CuO	0.0121	0.0012	0.0131	0.0135	0.0012	0.0146	0.0107	0.0012	0.0113	
ZnO	0.0049	0.0010	0.0053	0.0075	0.0010	0.0081	0.0042	0.0010	0.0044	
Ga2O3	0.0054	0.0012	0.0058	0.0042	0.0011	0.0045	0.0024	0.0011	0.0025	
As2O3	0.0000	0.0010	0.0000	0.0032	0.0010	0.0035	0.0020	0.0010	0.0021	
Br	0.0006	0.0007	0.0006	0.0007	0.0007	0.0008	0.0005	0.0007	0.0005	
Rb2O	0.0129	0.0007	0.0139	0.0115	0.0007	0.0125	0.0065	0.0007	0.0069	
SrO	0.0134	0.0007	0.0144	0.0118	0.0007	0.0128	0.0042	0.0006	0.0044	
Y2O3	0.0018	0.0008	0.0019	0.0015	0.0008	0.0016	0.0015	0.0007	0.0016	
ZrO2	0.0277	0.0007	0.0299	0.0292	0.0006	0.0316	0.0293	0.0006	0.0311	
Nb2O5	0.0006	0.0008	0.0007	0.0017	0.0008	0.0018	0.0000	0.0007	0.0000	
MoO3	0.0000	0.0008	0.0000	0.0001	0.0008	0.0001	0.0006	0.0008	0.0006	
BaO	0.0479	0.0145	0.0517	0.0592	0.0140	0.0641	0.0368	0.0139	0.0390	
HfO2	0.0043	0.0039	0.0046	0.0043	0.0038	0.0047	0.0042	0.0038	0.0045	
PbO	0.0047	0.0020	0.0051	0.0000	0.0020	0.0000	0.0000	0.0019	0.0000	
ThO2	0.0000	0.0014	0.0000	0.0000	0.0014	0.0000	0.0000	0.0013	0.0000	
Ра	0.0044	0.0011	0.0047	0.0041	0.0011	0.0044	0.0025	0.0010	0.0027	
U308	0.0000	0.0002	0.0000	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	
TGA	7.2850			7.6060			5.6770			
Total	100.0000			100.0000			100.0000			

		34H			341			35A			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %		
Na2O	0.0827	0.0244	0.0889	0.0671	0.0255	0.0713	0.0264	0.0242	0.0283		
MgO	0.5001	0.0229	0.5377	0.7399	0.0224	0.7858	0.4802	0.0197	0.5154		
Al2O3	20.5174	0.0203	22.0579	17.1038	0.0190	18.1652	19.3124	0.0202	20.7299		
SiO2	67.7573	0.0316	72.8447	71.4006	0.0322	75.8314	70.9996	0.0320	76.2109		
P2O5	0.0349	0.0042	0.0375	0.0345	0.0041	0.0366	0.0296	0.0043	0.0318		
SO3	0.0641	0.0071	0.0689	0.0576	0.0073	0.0612	0.1255	0.0074	0.1347		
Cl	0.0037	0.0095	0.0040	0.0000	0.0096	0.0000	0.0001	0.0097	0.0001		
К2О	1.7786	0.0043	1.9121	2.1084	0.0041	2.2392	0.6400	0.0039	0.6870		
CaO	0.2831	0.0053	0.3044	0.4134	0.0053	0.4391	0.1408	0.0052	0.1511		
TiO2	0.8398	0.0354	0.9029	0.7163	0.0368	0.7608	0.5009	0.0352	0.5377		
V2O5	0.0353	0.0055	0.0379	0.0102	0.0057	0.0108	0.0221	0.0054	0.0237		
Cr2O3	0.0132	0.0015	0.0142	0.0093	0.0015	0.0099	0.0106	0.0015	0.0114		
MnO	0.0037	0.0024	0.0040	0.0058	0.0024	0.0062	0.0028	0.0024	0.0030		
Fe2O3	0.9506	0.0049	1.0220	1.3102	0.0048	1.3915	0.7526	0.0049	0.8078		
Co2O3	0.0015	0.0018	0.0016	0.0033	0.0018	0.0035	0.0013	0.0018	0.0014		
NiO	0.0135	0.0014	0.0145	0.0169	0.0014	0.0180	0.0161	0.0014	0.0173		
CuO	0.0138	0.0012	0.0148	0.0116	0.0012	0.0123	0.0113	0.0012	0.0121		
ZnO	0.0084	0.0010	0.0090	0.0213	0.0010	0.0226	0.0103	0.0010	0.0111		
Ga2O3	0.0014	0.0011	0.0015	0.0035	0.0011	0.0037	0.0012	0.0011	0.0013		
As2O3	0.0000	0.0010	0.0000	0.0000	0.0010	0.0000	0.0005	0.0010	0.0005		
Br	0.0007	0.0007	0.0008	0.0000	0.0007	0.0000	0.0003	0.0007	0.0003		
Rb2O	0.0106	0.0007	0.0114	0.0159	0.0007	0.0169	0.0047	0.0007	0.0050		
SrO	0.0101	0.0007	0.0109	0.0131	0.0007	0.0139	0.0054	0.0007	0.0058		
Y2O3	0.0022	0.0008	0.0024	0.0024	0.0008	0.0026	0.0008	0.0008	0.0009		
ZrO2	0.0313	0.0006	0.0336	0.0361	0.0006	0.0383	0.0402	0.0006	0.0432		
Nb2O5	0.0013	0.0008	0.0014	0.0009	0.0008	0.0010	0.0007	0.0008	0.0008		
MoO3	0.0000	0.0008	0.0000	0.0003	0.0008	0.0003	0.0000	0.0008	0.0000		
BaO	0.0451	0.0142	0.0485	0.0381	0.0142	0.0405	0.0181	0.0139	0.0194		
HfO2	0.0038	0.0038	0.0041	0.0054	0.0038	0.0057	0.0051	0.0039	0.0055		
PbO	0.0043	0.0020	0.0046	0.0043	0.0019	0.0046	0.0007	0.0020	0.0008		
ThO2	0.0007	0.0014	0.0007	0.0000	0.0013	0.0000	0.0003	0.0014	0.0003		
Ра	0.0028	0.0011	0.0030	0.0063	0.0011	0.0067	0.0010	0.0011	0.0011		
U308	0.0001	0.0002	0.0001	0.0004	0.0002	0.0004	0.0004	0.0002	0.0004		
TGA	6.9840			5.8430			6.8380				
Total	100.0000			100.0000			100.0000				

		35B		35C			35D			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.0648	0.0260	0.0693	0.0546	0.0263	0.0587	0.0768	0.0252	0.0816	
MgO	1.0359	0.0194	1.1085	0.8849	0.0208	0.9512	0.8896	0.0203	0.9446	
Al2O3	17.9805	0.0194	19.2402	20.0442	0.0201	21.5457	20.6164	0.0204	21.8916	
SiO2	69.1243	0.0317	73.9669	66.0323	0.0315	70.9788	67.0620	0.0315	71.2100	
P2O5	0.0389	0.0043	0.0416	0.0287	0.0045	0.0309	0.0331	0.0042	0.0352	
SO3	0.6561	0.0075	0.7021	1.2917	0.0077	1.3885	0.0788	0.0073	0.0837	
Cl	0.0021	0.0095	0.0023	0.0000	0.0097	0.0000	0.0000	0.0097	0.0000	
К2О	1.4644	0.0040	1.5670	1.8521	0.0043	1.9908	3.0419	0.0046	3.2300	
CaO	0.4555	0.0053	0.4874	0.9073	0.0055	0.9753	0.1031	0.0053	0.1095	
TiO2	0.8374	0.0358	0.8961	0.5974	0.0371	0.6422	0.6281	0.0359	0.6669	
V2O5	0.0376	0.0054	0.0402	0.0105	0.0058	0.0113	0.0201	0.0055	0.0213	
Cr2O3	0.0111	0.0015	0.0119	0.0100	0.0015	0.0108	0.0091	0.0016	0.0097	
MnO	0.0416	0.0024	0.0445	0.0041	0.0024	0.0044	0.0047	0.0024	0.0050	
Fe2O3	1.4834	0.0297	1.5873	1.1939	0.0050	1.2833	1.4483	0.0050	1.5379	
Co2O3	0.0130	0.0018	0.0139	0.0007	0.0018	0.0007	0.0010	0.0018	0.0011	
NiO	0.0370	0.0014	0.0396	0.0122	0.0014	0.0131	0.0115	0.0014	0.0122	
CuO	0.0116	0.0012	0.0124	0.0124	0.0012	0.0133	0.0112	0.0012	0.0119	
ZnO	0.0370	0.0010	0.0396	0.0045	0.0010	0.0048	0.0072	0.0010	0.0076	
Ga2O3	0.0048	0.0011	0.0051	0.0034	0.0011	0.0037	0.0030	0.0011	0.0032	
As2O3	0.0000	0.0010	0.0000	0.0034	0.0010	0.0037	0.0007	0.0010	0.0007	
Br	0.0000	0.0007	0.0000	0.0006	0.0007	0.0006	0.0007	0.0007	0.0007	
Rb2O	0.0117	0.0007	0.0125	0.0124	0.0007	0.0133	0.0183	0.0007	0.0194	
SrO	0.0118	0.0007	0.0126	0.0064	0.0007	0.0069	0.0046	0.0007	0.0049	
Y2O3	0.0040	0.0008	0.0043	0.0025	0.0008	0.0027	0.0021	0.0008	0.0022	
ZrO2	0.0335	0.0007	0.0359	0.0254	0.0007	0.0273	0.0307	0.0007	0.0326	
Nb2O5	0.0018	0.0008	0.0019	0.0011	0.0008	0.0012	0.0017	0.0008	0.0018	
MoO3	0.0003	0.0008	0.0003	0.0007	0.0008	0.0008	0.0000	0.0008	0.0000	
BaO	0.0407	0.0141	0.0435	0.0239	0.0147	0.0257	0.0567	0.0140	0.0602	
HfO2	0.0024	0.0039	0.0026	0.0060	0.0039	0.0065	0.0056	0.0039	0.0059	
PbO	0.0043	0.0020	0.0046	0.0000	0.0020	0.0000	0.0017	0.0020	0.0018	
ThO2	0.0019	0.0014	0.0020	0.000	0.0014	0.0000	0.0000	0.0014	0.0000	
Ра	0.0035	0.0011	0.0037	0.0035	0.0011	0.0038	0.0059	0.0011	0.0063	
U308	0.0002	0.0002	0.0002	0.0000	0.0002	0.0000	0.0005	0.0002	0.0005	
TGA	6.5470			6.9690			5.8250			
Total	100.0000			100.0000			100.0000			
	35E			36A			36B			
--------	----------	-----------	---------	----------	-----------	---------	----------	-----------	---------	--
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.0989	0.0254	0.1045	0.0520	0.0239	0.0545	0.0704	0.0240	0.0742	
MgO	1.3211	0.0211	1.3964	0.1084	0.0194	0.1135	0.6804	0.0200	0.7175	
Al2O3	17.9689	0.0190	18.9926	14.5184	0.0176	15.2038	16.1829	0.0183	17.0646	
SiO2	67.0229	0.0309	70.8412	76.8773	0.0326	80.5065	72.6840	0.0321	76.6442	
P2O5	0.0356	0.0043	0.0376	0.0304	0.0042	0.0318	0.0337	0.0043	0.0355	
SO3	0.3166	0.0075	0.3346	0.0816	0.0070	0.0855	0.3181	0.0072	0.3354	
Cl	0.0000	0.0096	0.0000	0.0000	0.0094	0.0000	0.0058	0.0094	0.0061	
К2О	3.9649	0.0049	4.1908	1.9160	0.0040	2.0064	2.4365	0.0042	2.5693	
CaO	0.2249	0.0054	0.2377	0.0911	0.0051	0.0954	0.0638	0.0051	0.0673	
TiO2	0.6044	0.0372	0.6388	0.6416	0.0347	0.6719	0.6766	0.0357	0.7135	
V2O5	0.0207	0.0056	0.0219	0.0152	0.0054	0.0159	0.0209	0.0055	0.0220	
Cr2O3	0.0103	0.0015	0.0109	0.0090	0.0015	0.0094	0.0080	0.0015	0.0084	
MnO	0.0072	0.0025	0.0076	0.0056	0.0024	0.0059	0.0046	0.0024	0.0049	
Fe2O3	2.8270	0.0301	2.9881	0.9935	0.0048	1.0404	1.4992	0.0049	1.5809	
Co2O3	0.0023	0.0019	0.0024	0.0001	0.0018	0.0001	0.0016	0.0018	0.0017	
NiO	0.0120	0.0014	0.0127	0.0125	0.0014	0.0131	0.0112	0.0014	0.0118	
CuO	0.0126	0.0012	0.0133	0.0100	0.0012	0.0105	0.0113	0.0012	0.0119	
ZnO	0.0152	0.0010	0.0161	0.0057	0.0010	0.0060	0.0092	0.0010	0.0097	
Ga2O3	0.0036	0.0012	0.0038	0.0024	0.0011	0.0025	0.0028	0.0011	0.0029	
As2O3	0.0044	0.0010	0.0046	0.0030	0.0010	0.0031	0.0042	0.0010	0.0044	
Br	0.0006	0.0007	0.0006	0.0005	0.0007	0.0005	0.0001	0.0007	0.0001	
Rb2O	0.0213	0.0007	0.0225	0.0121	0.0007	0.0127	0.0141	0.0007	0.0149	
SrO	0.0089	0.0007	0.0094	0.0032	0.0007	0.0033	0.0057	0.0007	0.0060	
Y2O3	0.0026	0.0008	0.0027	0.0024	0.0007	0.0025	0.0040	0.0008	0.0042	
ZrO2	0.0216	0.0007	0.0228	0.0538	0.0006	0.0563	0.0415	0.0006	0.0438	
Nb2O5	0.0013	0.0008	0.0014	0.0011	0.0008	0.0011	0.0010	0.0008	0.0011	
MoO3	0.0000	0.0008	0.0000	0.0004	0.0008	0.0004	0.0000	0.0008	0.0000	
BaO	0.0672	0.0143	0.0710	0.0328	0.0138	0.0343	0.0321	0.0143	0.0339	
HfO2	0.0040	0.0039	0.0042	0.0069	0.0038	0.0072	0.0048	0.0038	0.0051	
PbO	0.0000	0.0020	0.0000	0.0000	0.0019	0.0000	0.0000	0.0020	0.0000	
ThO2	0.0011	0.0014	0.0012	0.0007	0.0013	0.0007	0.0000	0.0013	0.0000	
Ра	0.0078	0.0011	0.0082	0.0039	0.0010	0.0041	0.0045	0.0011	0.0047	
U308	0.0004	0.0002	0.0004	0.0007	0.0002	0.0007	0.0000	0.0002	0.0000	
TGA:	5.3900			4.5080			5.1670			
Total:	100.0000			100.0000			100.0000			

		37A		37В			38A			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.0745	0.0251	0.0813	0.0608	0.0239	0.0652	0.0504	0.0252	0.0529	
MgO	0.7623	0.0211	0.8317	0.6874	0.0198	0.7374	0.6977	0.0193	0.7325	
Al2O3	21.0795	0.0209	22.9985	20.6078	0.0204	22.1069	15.5175	0.0181	16.2905	
SiO2	62.9955	0.0310	68.7304	67.4651	0.0312	72.3727	74.5422	0.0322	78.2554	
P2O5	0.0296	0.0043	0.0323	0.0299	0.0043	0.0321	0.0249	0.0043	0.0261	
SO3	1.7606	0.0079	1.9209	0.1051	0.0070	0.1127	0.0597	0.0069	0.0627	
Cl	0.0000	0.0097	0.0000	0.0000	0.0095	0.0000	0.0014	0.0093	0.0015	
К2О	1.4457	0.0041	1.5773	1.8796	0.0042	2.0163	1.8110	0.0041	1.9012	
CaO	1.1829	0.0055	1.2906	0.1391	0.0051	0.1492	0.2215	0.0052	0.2325	
TiO2	0.8014	0.0363	0.8744	0.7694	0.0349	0.8254	1.0345	0.0349	1.0860	
V2O5	0.0253	0.0055	0.0276	0.0291	0.0053	0.0312	0.0258	0.0053	0.0271	
Cr2O3	0.0097	0.0016	0.0106	0.0088	0.0015	0.0094	0.0081	0.0015	0.0085	
MnO	0.0127	0.0025	0.0139	0.0062	0.0024	0.0066	0.0087	0.0024	0.0091	
Fe2O3	1.3391	0.0294	1.4610	1.2747	0.0290	1.3674	1.1127	0.0292	1.1681	
Co2O3	0.0037	0.0019	0.0040	0.0017	0.0018	0.0018	0.0000	0.0018	0.0000	
NiO	0.0187	0.0014	0.0204	0.0123	0.0014	0.0132	0.0136	0.0014	0.0143	
CuO	0.0097	0.0012	0.0106	0.0103	0.0012	0.0110	0.0091	0.0012	0.0096	
ZnO	0.0084	0.0010	0.0092	0.0089	0.0010	0.0095	0.0028	0.0010	0.0029	
Ga2O3	0.0053	0.0011	0.0058	0.0046	0.0011	0.0049	0.0056	0.0011	0.0059	
As2O3	0.0014	0.0010	0.0015	0.0000	0.0010	0.0000	0.0011	0.0010	0.0012	
Br	0.0006	0.0007	0.0007	0.0005	0.0007	0.0005	0.0000	0.0007	0.0000	
Rb2O	0.0099	0.0007	0.0108	0.0131	0.0007	0.0140	0.0124	0.0007	0.0130	
SrO	0.0125	0.0007	0.0136	0.0090	0.0007	0.0097	0.0075	0.0006	0.0079	
Y2O3	0.0017	0.0008	0.0019	0.0016	0.0008	0.0017	0.0027	0.0007	0.0028	
ZrO2	0.0401	0.0007	0.0437	0.0359	0.0006	0.0385	0.0334	0.0006	0.0351	
Nb2O5	0.0020	0.0008	0.0022	0.0010	0.0008	0.0011	0.0027	0.0007	0.0028	
MoO3	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	0.0003	0.0008	0.0003	
BaO	0.0119	0.0146	0.0130	0.0433	0.0137	0.0464	0.0397	0.0140	0.0417	
HfO2	0.0066	0.0039	0.0072	0.0040	0.0038	0.0043	0.0033	0.0038	0.0035	
PbO	0.0000	0.0020	0.0000	0.0053	0.0019	0.0057	0.0000	0.0019	0.0000	
ThO2	0.0014	0.0014	0.0015	0.0007	0.0013	0.0007	0.0004	0.0013	0.0004	
Ра	0.0031	0.0011	0.0034	0.0041	0.0011	0.0044	0.0042	0.0010	0.0044	
U308	0.0000	0.0002	0.0000	0.0001	0.0002	0.0001	0.0001	0.0002	0.0001	
TGA	8.3440			6.7810			4.7450			
Total	100.0000			100.0000			100.0000			

		38B		38C			38D			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.0767	0.0255	0.0816	0.0578	0.0227	0.0613	0.0464	0.0240	0.0487	
MgO	0.7240	0.0202	0.7703	0.1012	0.0194	0.1073	0.4451	0.0188	0.4672	
Al2O3	19.1738	0.0198	20.3996	17.3067	0.0190	18.3423	14.5201	0.0174	15.2425	
SiO2	69.4804	0.0315	73.9224	73.8580	0.0326	78.2775	76.5001	0.0326	80.3058	
P2O5	0.0279	0.0042	0.0297	0.0258	0.0043	0.0273	0.0236	0.0043	0.0248	
SO3	0.1730	0.0074	0.1841	0.0766	0.0071	0.0812	0.1900	0.0071	0.1995	
Cl	0.0000	0.0096	0.0000	0.0000	0.0097	0.0000	0.0014	0.0095	0.0015	
К2О	1.8478	0.0041	1.9659	1.3014	0.0041	1.3793	1.7632	0.0040	1.8509	
CaO	0.2543	0.0053	0.2706	0.0694	0.0052	0.0735	0.0953	0.0051	0.1000	
TiO2	0.8343	0.0355	0.8876	0.5625	0.0352	0.5962	0.5251	0.0344	0.5512	
V2O5	0.0258	0.0055	0.0274	0.0199	0.0054	0.0211	0.0183	0.0053	0.0192	
Cr2O3	0.0104	0.0016	0.0111	0.0081	0.0015	0.0086	0.0088	0.0015	0.0092	
MnO	0.0049	0.0024	0.0052	0.0036	0.0024	0.0038	0.0034	0.0024	0.0036	
Fe2O3	1.2370	0.0049	1.3161	0.8408	0.0299	0.8911	0.9900	0.0047	1.0393	
Co2O3	0.0000	0.0018	0.0000	0.0007	0.0018	0.0007	0.0002	0.0018	0.0002	
NiO	0.0111	0.0014	0.0118	0.0108	0.0014	0.0114	0.0103	0.0013	0.0108	
CuO	0.0093	0.0012	0.0099	0.0102	0.0012	0.0108	0.0109	0.0012	0.0114	
ZnO	0.0023	0.0010	0.0025	0.0021	0.0010	0.0022	0.0018	0.0010	0.0019	
Ga2O3	0.0032	0.0011	0.0034	0.0032	0.0011	0.0034	0.0035	0.0011	0.0037	
As2O3	0.0000	0.0010	0.0000	0.0000	0.0010	0.0000	0.0000	0.0010	0.0000	
Br	0.0006	0.0007	0.0006	0.0000	0.0007	0.0000	0.0004	0.0007	0.0004	
Rb2O	0.0131	0.0007	0.0139	0.0084	0.0007	0.0089	0.0092	0.0007	0.0097	
SrO	0.0102	0.0007	0.0109	0.0035	0.0007	0.0037	0.0050	0.0006	0.0052	
Y2O3	0.0009	0.0008	0.0010	0.0013	0.0008	0.0014	0.0015	0.0007	0.0016	
ZrO2	0.0324	0.0007	0.0345	0.0494	0.0006	0.0524	0.0418	0.0006	0.0439	
Nb2O5	0.0011	0.0008	0.0012	0.0008	0.0008	0.0008	0.0007	0.0007	0.0007	
MoO3	0.0001	0.0008	0.0001	0.0000	0.0008	0.0000	0.0001	0.0008	0.0001	
BaO	0.0254	0.0147	0.0270	0.0228	0.0141	0.0242	0.0291	0.0140	0.0306	
HfO2	0.0042	0.0039	0.0045	0.0058	0.0038	0.0061	0.0062	0.0037	0.0065	
PbO	0.0022	0.0020	0.0023	0.0003	0.0020	0.0003	0.0055	0.0019	0.0058	
ThO2	0.0005	0.0014	0.0005	0.0002	0.0013	0.0002	0.0000	0.0013	0.0000	
Ра	0.0035	0.0011	0.0037	0.0025	0.0011	0.0027	0.0033	0.0010	0.0035	
U3O8	0.0006	0.0002	0.0006	0.0003	0.0002	0.0003	0.0006	0.0002	0.0006	
TGA	6.0090			5.6460			4.7390			
Total	100.0000			100.0000			100.0000			

	41A			41B			41D			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.0982	0.0253	0.1066	0.0616	0.0237	0.0650	0.0880	0.0245	0.0928	
MgO	1.1451	0.0212	1.2426	0.0976	0.0200	0.1030	0.9717	0.0194	1.0249	
Al2O3	18.7957	0.0207	20.3957	16.5214	0.0184	17.4331	16.3486	0.0187	17.2439	
SiO2	66.1537	0.0324	71.7853	74.0381	0.0324	78.1240	69.8691	0.0316	73.6953	
P2O5	0.0357	0.0045	0.0387	0.0284	0.0042	0.0300	0.0367	0.0042	0.0387	
SO3	0.1832	0.0075	0.1988	0.0926	0.0071	0.0977	0.4505	0.0072	0.4752	
Cl	0.0004	0.0101	0.0004	0.0000	0.0097	0.0000	0.0047	0.0092	0.0050	
К2О	2.6254	0.0045	2.8489	1.8782	0.0042	1.9819	3.5204	0.0047	3.7132	
CaO	0.1811	0.0056	0.1965	0.0848	0.0052	0.0895	0.0295	0.0052	0.0311	
TiO2	0.8073	0.0399	0.8760	0.5987	0.0362	0.6317	0.6777	0.0356	0.7148	
V2O5	0.0189	0.0061	0.0205	0.0146	0.0056	0.0154	0.0202	0.0053	0.0213	
Cr2O3	0.0114	0.0016	0.0124	0.0081	0.0015	0.0085	0.0091	0.0015	0.0096	
MnO	0.0068	0.0025	0.0074	0.0063	0.0024	0.0067	0.0064	0.0024	0.0068	
Fe2O3	1.8813	0.0053	2.0414	1.1827	0.0049	1.2480	2.6003	0.0047	2.7427	
Co2O3	0.0015	0.0019	0.0016	0.0012	0.0018	0.0013	0.0019	0.0018	0.0020	
NiO	0.0125	0.0015	0.0136	0.0115	0.0014	0.0121	0.0121	0.0014	0.0128	
CuO	0.0124	0.0013	0.0135	0.0106	0.0012	0.0112	0.0129	0.0012	0.0136	
ZnO	0.0063	0.0011	0.0068	0.0113	0.0010	0.0119	0.0100	0.0010	0.0106	
Ga2O3	0.0065	0.0012	0.0071	0.0024	0.0011	0.0025	0.0025	0.0011	0.0026	
As2O3	0.0000	0.0011	0.0000	0.0016	0.0010	0.0017	0.0049	0.0010	0.0052	
Br	0.0004	0.0007	0.0004	0.0004	0.0007	0.0004	0.0004	0.0007	0.0004	
Rb2O	0.0200	0.0008	0.0217	0.0118	0.0007	0.0124	0.0176	0.0007	0.0186	
SrO	0.0105	0.0007	0.0114	0.0058	0.0007	0.0061	0.0075	0.0007	0.0079	
Y2O3	0.0012	0.0008	0.0013	0.0016	0.0008	0.0017	0.0024	0.0008	0.0025	
ZrO2	0.0246	0.0007	0.0267	0.0429	0.0006	0.0453	0.0319	0.0006	0.0336	
Nb2O5	0.0019	0.0008	0.0021	0.0010	0.0008	0.0011	0.0008	0.0008	0.0008	
MoO3	0.0000	0.0009	0.0000	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	
BaO	0.0996	0.0150	0.1081	0.0456	0.0137	0.0481	0.0596	0.0141	0.0629	
HfO2	0.0022	0.0041	0.0024	0.0043	0.0038	0.0045	0.0045	0.0038	0.0047	
PbO	0.0036	0.0021	0.0039	0.0000	0.0019	0.0000	0.0000	0.0020	0.0000	
ThO2	0.0000	0.0014	0.0000	0.0007	0.0013	0.0007	0.0000	0.0014	0.0000	
Ра	0.0076	0.0011	0.0082	0.0042	0.0011	0.0044	0.0062	0.0011	0.0065	
U3O8	0.0000	0.0002	0.0000	0.0001	0.0002	0.0001	0.0000	0.0002	0.0000	
TGA:	7.8450			5.2300			5.1920			
Total:	100.0000			100.0000			100.0000			

		43A		43B			43C			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.0599	0.0248	0.0633	0.1203	0.0248	0.1302	0.1662	0.0250	0.1783	
MgO	0.0831	0.0198	0.0878	0.7795	0.0210	0.8436	1.2393	0.0210	1.3297	
Al2O3	14.8913	0.0180	15.7286	24.0890	0.0219	26.0709	19.6155	0.0204	21.0460	
SiO2	75.8766	0.0329	80.1426	62.9463	0.0311	68.1252	65.9706	0.0314	70.7816	
P2O5	0.0336	0.0044	0.0355	0.0344	0.0044	0.0372	0.0405	0.0043	0.0434	
SO3	0.0487	0.0071	0.0514	0.0626	0.0073	0.0678	0.0938	0.0074	0.1006	
Cl	0.0025	0.0096	0.0026	0.0000	0.0100	0.0000	0.0207	0.0099	0.0222	
К2О	0.9197	0.0040	0.9714	2.0266	0.0044	2.1933	3.2129	0.0044	3.4472	
CaO	0.2677	0.0052	0.2827	0.1854	0.0053	0.2007	0.3552	0.0055	0.3811	
TiO2	0.9938	0.0356	1.0497	0.8442	0.0365	0.9137	0.7666	0.0366	0.8225	
V2O5	0.0293	0.0054	0.0310	0.0446	0.0055	0.0483	0.0343	0.0056	0.0368	
Cr2O3	0.0098	0.0015	0.0103	0.0116	0.0016	0.0126	0.0131	0.0016	0.0141	
MnO	0.0297	0.0024	0.0314	0.0050	0.0025	0.0054	0.0053	0.0025	0.0057	
Fe2O3	1.3110	0.0301	1.3847	1.1090	0.0050	1.2002	1.4676	0.0051	1.5746	
Co2O3	0.0046	0.0018	0.0049	0.0007	0.0019	0.0008	0.0017	0.0018	0.0018	
NiO	0.0152	0.0014	0.0161	0.0128	0.0014	0.0138	0.0162	0.0014	0.0174	
CuO	0.0116	0.0012	0.0123	0.0103	0.0012	0.0112	0.0143	0.0012	0.0153	
ZnO	0.0052	0.0010	0.0055	0.0038	0.0010	0.0041	0.0078	0.0010	0.0084	
Ga2O3	0.0041	0.0011	0.0043	0.0042	0.0012	0.0045	0.0041	0.0012	0.0044	
As2O3	0.0044	0.0010	0.0047	0.0034	0.0010	0.0037	0.0056	0.0010	0.0060	
Br	0.0007	0.0007	0.0007	0.0005	0.0007	0.0005	0.0015	0.0007	0.0016	
Rb2O	0.0060	0.0007	0.0063	0.0115	0.0007	0.0124	0.0216	0.0007	0.0232	
SrO	0.0067	0.0007	0.0071	0.0087	0.0007	0.0094	0.0128	0.0007	0.0137	
Y2O3	0.0022	0.0008	0.0023	0.0006	0.0008	0.0007	0.0041	0.0008	0.0044	
ZrO2	0.0304	0.0006	0.0321	0.0180	0.0007	0.0195	0.0197	0.0007	0.0211	
Nb2O5	0.0025	0.0008	0.0026	0.0010	0.0008	0.0011	0.0009	0.0008	0.0010	
MoO3	0.0004	0.0008	0.0004	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	
BaO	0.0188	0.0143	0.0199	0.0546	0.0146	0.0591	0.0784	0.0147	0.0841	
HfO2	0.0055	0.0038	0.0058	0.0057	0.0039	0.0062	0.0037	0.0039	0.0040	
PbO	0.0000	0.0020	0.0000	0.0000	0.0020	0.0000	0.0000	0.0020	0.0000	
ThO2	0.0001	0.0014	0.0001	0.0000	0.0014	0.0000	0.0012	0.0014	0.0013	
Ра	0.0014	0.0011	0.0015	0.0036	0.0011	0.0039	0.0079	0.0011	0.0085	
U3O8	0.0004	0.0002	0.0004	0.0000	0.0002	0.0000	0.0000	0.0002	0.0000	
TGA	5.3230			7.6020			6.7970			
Total	100.0000			100.0000			100.0000			

	43D			43E			44A			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.1336	0.0241	0.1420	0.1870	0.0251	0.1970	0.0503	0.0241	0.0528	
MgO	0.9801	0.0206	1.0419	1.8030	0.0203	1.8993	0.8653	0.0196	0.9077	
Al2O3	19.3027	0.0199	20.5209	17.9964	0.0193	18.9572	11.2949	0.0160	11.8482	
SiO2	68.6453	0.0312	72.9774	67.4484	0.0310	71.0491	78.4021	0.0329	82.2429	
P2O5	0.0338	0.0042	0.0359	0.0646	0.0042	0.0681	0.0250	0.0042	0.0262	
SO3	0.0755	0.0071	0.0803	0.0862	0.0072	0.0908	0.1529	0.0071	0.1604	
Cl	0.0053	0.0098	0.0056	0.0035	0.0096	0.0037	0.0019	0.0094	0.0020	
К2О	2.5670	0.0045	2.7290	3.3563	0.0046	3.5355	1.2781	0.0039	1.3407	
CaO	0.1245	0.0052	0.1324	0.1713	0.0053	0.1804	1.0412	0.0053	1.0922	
TiO2	0.7708	0.0357	0.8194	0.7218	0.0366	0.7603	1.1363	0.0350	1.1920	
V2O5	0.0261	0.0055	0.0277	0.0381	0.0056	0.0401	0.0174	0.0054	0.0182	
Cr2O3	0.0100	0.0015	0.0106	0.0121	0.0015	0.0127	0.0067	0.0015	0.0070	
MnO	0.0043	0.0024	0.0046	0.0111	0.0024	0.0117	0.0039	0.0024	0.0041	
Fe2O3	1.2180	0.0302	1.2949	2.8119	0.0302	2.9620	0.9156	0.0048	0.9604	
Co2O3	0.0008	0.0018	0.0008	0.0000	0.0019	0.0000	0.0031	0.0018	0.0032	
NiO	0.0131	0.0014	0.0139	0.0155	0.0014	0.0163	0.0132	0.0014	0.0138	
CuO	0.0124	0.0012	0.0132	0.0147	0.0012	0.0155	0.0096	0.0012	0.0101	
ZnO	0.0086	0.0010	0.0091	0.0146	0.0010	0.0154	0.0017	0.0010	0.0018	
Ga2O3	0.0031	0.0011	0.0033	0.0031	0.0011	0.0033	0.0021	0.0011	0.0022	
As2O3	0.0007	0.0010	0.0007	0.0072	0.0010	0.0076	0.0000	0.0010	0.0000	
Br	0.0019	0.0007	0.0020	0.0003	0.0007	0.0003	0.0005	0.0007	0.0005	
Rb2O	0.0140	0.0007	0.0149	0.0178	0.0007	0.0187	0.0092	0.0007	0.0097	
SrO	0.0073	0.0007	0.0078	0.0182	0.0007	0.0192	0.0071	0.0007	0.0074	
Y2O3	0.0021	0.0008	0.0022	0.0013	0.0008	0.0014	0.0030	0.0007	0.0031	
ZrO2	0.0207	0.0006	0.0220	0.0224	0.0007	0.0236	0.0516	0.0006	0.0541	
Nb2O5	0.0011	0.0008	0.0012	0.0011	0.0008	0.0012	0.0028	0.0008	0.0029	
MoO3	0.0000	0.0008	0.0000	0.0008	0.0008	0.0008	0.0001	0.0008	0.0001	
BaO	0.0544	0.0145	0.0578	0.0791	0.0145	0.0833	0.0199	0.0141	0.0209	
HfO2	0.0056	0.0038	0.0060	0.0024	0.0039	0.0025	0.0083	0.0038	0.0087	
PbO	0.0027	0.0020	0.0029	0.0153	0.0020	0.0161	0.0025	0.0019	0.0026	
ThO2	0.0005	0.0014	0.0005	0.0008	0.0014	0.0008	0.0008	0.0013	0.0008	
Ра	0.0052	0.0011	0.0055	0.0058	0.0011	0.0061	0.0031	0.0010	0.0033	
U308	0.0003	0.0002	0.0003	0.0000	0.0002	0.0000	0.0000	0.0002	0.0000	
TGA:	5.9360			5.0680			4.6700			
Total:	100.0000			100.0000			100.0000			

		44B		44C			45A			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.1024	0.0245	0.1084	0.1259	0.0251	0.1351	0.2724	0.0256	0.2962	
MgO	0.8718	0.0199	0.9225	1.2124	0.0204	1.3010	0.7871	0.0208	0.8560	
Al2O3	14.5580	0.0176	15.4054	19.1026	0.0200	20.4990	23.4380	0.0218	25.4888	
SiO2	71.4604	0.0319	75.6203	66.1600	0.0313	70.9962	61.5572	0.0308	66.9435	
P2O5	0.0246	0.0043	0.0260	0.0260	0.0043	0.0279	0.0280	0.0045	0.0304	
SO3	1.9371	0.0075	2.0499	0.3216	0.0073	0.3451	0.7877	0.0078	0.8566	
Cl	0.0000	0.0095	0.0000	0.0000	0.0098	0.0000	0.0000	0.0099	0.0000	
К2О	2.0940	0.0043	2.2159	3.0602	0.0046	3.2839	1.7363	0.0043	1.8882	
CaO	1.2078	0.0053	1.2781	0.1408	0.0053	0.1511	0.4261	0.0055	0.4634	
TiO2	0.8805	0.0353	0.9318	0.7804	0.0355	0.8374	0.8593	0.0365	0.9345	
V2O5	0.0198	0.0054	0.0210	0.0325	0.0054	0.0349	0.0434	0.0056	0.0472	
Cr2O3	0.0073	0.0015	0.0077	0.0099	0.0015	0.0106	0.0129	0.0016	0.0140	
MnO	0.0043	0.0024	0.0045	0.0109	0.0024	0.0117	0.0097	0.0025	0.0105	
Fe2O3	1.1575	0.0049	1.2249	2.0331	0.0050	2.1817	1.8358	0.0312	1.9964	
Co2O3	0.0057	0.0018	0.0060	0.0045	0.0018	0.0048	0.0040	0.0019	0.0044	
NiO	0.0244	0.0014	0.0258	0.0155	0.0014	0.0166	0.0252	0.0014	0.0274	
CuO	0.0102	0.0012	0.0108	0.0112	0.0012	0.0120	0.0103	0.0012	0.0112	
ZnO	0.0177	0.0010	0.0187	0.0183	0.0010	0.0196	0.0174	0.0010	0.0189	
Ga2O3	0.0039	0.0011	0.0041	0.0056	0.0011	0.0060	0.0023	0.0012	0.0025	
As2O3	0.0000	0.0010	0.0000	0.0008	0.0010	0.0009	0.0000	0.0010	0.0000	
Br	0.0004	0.0007	0.0004	0.0006	0.0007	0.0006	0.0000	0.0007	0.0000	
Rb2O	0.0133	0.0007	0.0141	0.0192	0.0007	0.0206	0.0098	0.0007	0.0107	
SrO	0.0064	0.0007	0.0068	0.0057	0.0007	0.0061	0.0104	0.0007	0.0113	
Y2O3	0.0036	0.0008	0.0038	0.0015	0.0008	0.0016	0.0005	0.0008	0.0005	
ZrO2	0.0411	0.0006	0.0435	0.0258	0.0007	0.0277	0.0179	0.0007	0.0195	
Nb2O5	0.0018	0.0008	0.0019	0.0017	0.0008	0.0018	0.0014	0.0008	0.0015	
MoO3	0.0000	0.0008	0.0000	0.0003	0.0008	0.0003	0.0000	0.0008	0.0000	
BaO	0.0315	0.0140	0.0333	0.0447	0.0142	0.0480	0.0463	0.0147	0.0504	
HfO2	0.0065	0.0038	0.0069	0.0085	0.0039	0.0091	0.0053	0.0039	0.0058	
PbO	0.0026	0.0019	0.0028	0.0007	0.0020	0.0008	0.0064	0.0020	0.0070	
ThO2	0.0000	0.0013	0.0000	0.0004	0.0014	0.0004	0.0001	0.0014	0.0001	
Ра	0.0043	0.0011	0.0046	0.0070	0.0011	0.0075	0.0029	0.0011	0.0031	
U308	0.0001	0.0002	0.0001	0.0000	0.0002	0.0000	0.0000	0.0002	0.0000	
TGA	5.5010			6.8120			8.0460			
Total	100.0000			100.0000			100.0000			

		45B		45C			46A			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.3882	0.0264	0.4195	0.2393	0.0248	0.2550	0.1813	0.0246	0.1957	
MgO	0.9733	0.0215	1.0517	0.9342	0.0206	0.9954	0.8612	0.0213	0.9295	
Al2O3	25.1661	0.0224	27.1930	19.8822	0.0201	21.1837	22.1015	0.0211	23.8539	
SiO2	60.5914	0.0307	65.4716	66.7404	0.0314	71.1094	62.6069	0.0310	67.5707	
P2O5	0.0399	0.0044	0.0431	0.0466	0.0044	0.0497	0.0380	0.0044	0.0410	
SO3	0.2862	0.0073	0.3092	0.2268	0.0073	0.2416	0.2486	0.0072	0.2683	
Cl	0.0000	0.0098	0.0000	0.0001	0.0097	0.0001	0.0010	0.0099	0.0011	
К2О	2.7220	0.0046	2.9412	2.9181	0.0046	3.1091	2.5294	0.0046	2.7299	
CaO	0.0832	0.0053	0.0899	0.0756	0.0054	0.0805	0.5026	0.0054	0.5425	
TiO2	0.6925	0.0387	0.7483	0.7850	0.0383	0.8364	0.9445	0.0365	1.0194	
V2O5	0.0367	0.0060	0.0397	0.0250	0.0060	0.0266	0.0361	0.0056	0.0390	
Cr2O3	0.0133	0.0016	0.0144	0.0130	0.0015	0.0138	0.0118	0.0016	0.0127	
MnO	0.0073	0.0025	0.0079	0.0064	0.0024	0.0068	0.0103	0.0025	0.0111	
Fe2O3	1.3363	0.0050	1.4439	1.7921	0.0050	1.9094	2.3984	0.0301	2.5886	
Co2O3	0.0021	0.0019	0.0023	0.0002	0.0019	0.0002	0.0046	0.0019	0.0050	
NiO	0.0204	0.0014	0.0220	0.0126	0.0014	0.0134	0.0125	0.0014	0.0135	
CuO	0.0124	0.0012	0.0134	0.0126	0.0012	0.0134	0.0117	0.0012	0.0126	
ZnO	0.0209	0.0010	0.0226	0.0077	0.0010	0.0082	0.0099	0.0010	0.0107	
Ga2O3	0.0052	0.0012	0.0056	0.0046	0.0011	0.0049	0.0037	0.0012	0.0040	
As2O3	0.0000	0.0010	0.0000	0.0072	0.0010	0.0077	0.0019	0.0010	0.0020	
Br	0.0004	0.0007	0.0004	0.0000	0.0007	0.0000	0.0009	0.0007	0.0010	
Rb2O	0.0146	0.0007	0.0158	0.0170	0.0007	0.0181	0.0125	0.0007	0.0135	
SrO	0.0108	0.0007	0.0117	0.0100	0.0007	0.0107	0.0107	0.0007	0.0116	
Y2O3	0.0001	0.0008	0.0001	0.0009	0.0008	0.0010	0.0000	0.0008	0.0000	
ZrO2	0.0145	0.0007	0.0157	0.0176	0.0007	0.0188	0.0227	0.0007	0.0245	
Nb2O5	0.0007	0.0008	0.0008	0.0017	0.0008	0.0018	0.0021	0.0008	0.0023	
MoO3	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	
BaO	0.0905	0.0142	0.0978	0.0686	0.0144	0.0731	0.0802	0.0147	0.0866	
HfO2	0.0056	0.0039	0.0061	0.0038	0.0039	0.0040	0.0038	0.0040	0.0041	
PbO	0.0055	0.0020	0.0059	0.0000	0.0020	0.0000	0.0000	0.0020	0.0000	
ThO2	0.0000	0.0014	0.0000	0.0000	0.0014	0.0000	0.0006	0.0014	0.0006	
Ра	0.0059	0.0011	0.0064	0.0067	0.0011	0.0071	0.0044	0.0011	0.0047	
U308	0.0000	0.0002	0.0000	0.0001	0.0002	0.0001	0.0000	0.0002	0.0000	
TGA	7.4540			6.1440			7.3460			
Total	100.0000			100.0000			100.0000			

	46B			46C			46D			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.0390	0.0236	0.0407	0.0527	0.0257	0.0568	0.0642	0.0246	0.0699	
MgO	0.1683	0.0179	0.1758	0.2981	0.0204	0.3213	0.0742	0.0209	0.0808	
Al2O3	11.1379	0.0161	11.6339	20.0931	0.0204	21.6542	22.3290	0.0214	24.3102	
SiO2	81.4769	0.0336	85.1049	68.4056	0.0321	73.7201	62.8193	0.0311	68.3933	
P2O5	0.0184	0.0043	0.0192	0.0200	0.0044	0.0215	0.0287	0.0044	0.0313	
SO3	0.1540	0.0071	0.1609	0.1836	0.0071	0.1979	0.2723	0.0075	0.2965	
Cl	0.0000	0.0095	0.0000	0.0000	0.0097	0.0000	0.0022	0.0097	0.0024	
К2О	0.2030	0.0035	0.2120	0.6597	0.0039	0.7110	1.0500	0.0041	1.1432	
CaO	0.1127	0.0050	0.1177	0.1609	0.0053	0.1734	0.0804	0.0054	0.0875	
TiO2	0.8399	0.0345	0.8773	0.7008	0.0375	0.7552	0.7768	0.0363	0.8457	
V2O5	0.0190	0.0053	0.0198	0.0168	0.0059	0.0181	0.0404	0.0056	0.0440	
Cr2O3	0.0087	0.0015	0.0091	0.0109	0.0015	0.0117	0.0111	0.0016	0.0121	
MnO	0.0020	0.0024	0.0021	0.0060	0.0024	0.0065	0.0108	0.0024	0.0118	
Fe2O3	1.4484	0.0047	1.5129	2.0759	0.0051	2.2372	4.1786	0.0312	4.5494	
Co2O3	0.0006	0.0018	0.0006	0.0010	0.0018	0.0011	0.0014	0.0019	0.0015	
NiO	0.0127	0.0014	0.0133	0.0118	0.0014	0.0127	0.0135	0.0014	0.0147	
CuO	0.0107	0.0012	0.0112	0.0090	0.0012	0.0097	0.0114	0.0012	0.0124	
ZnO	0.0031	0.0010	0.0032	0.0040	0.0010	0.0043	0.0036	0.0011	0.0039	
Ga2O3	0.0021	0.0011	0.0022	0.0028	0.0012	0.0030	0.0042	0.0012	0.0046	
As2O3	0.0011	0.0010	0.0011	0.0000	0.0010	0.0000	0.0068	0.0011	0.0074	
Br	0.0000	0.0007	0.0000	0.0002	0.0007	0.0002	0.0005	0.0007	0.0005	
Rb2O	0.0018	0.0007	0.0019	0.0054	0.0007	0.0058	0.0060	0.0008	0.0065	
SrO	0.0030	0.0006	0.0031	0.0044	0.0007	0.0047	0.0061	0.0007	0.0066	
Y2O3	0.0022	0.0007	0.0023	0.0011	0.0008	0.0012	0.0014	0.0008	0.0015	
ZrO2	0.0526	0.0006	0.0549	0.0329	0.0007	0.0355	0.0310	0.0007	0.0337	
Nb2O5	0.0017	0.0007	0.0018	0.0008	0.0008	0.0009	0.0012	0.0008	0.0013	
MoO3	0.0002	0.0008	0.0002	0.0002	0.0008	0.0002	0.0000	0.0009	0.0000	
BaO	0.0120	0.0136	0.0125	0.0246	0.0141	0.0265	0.0181	0.0145	0.0197	
HfO2	0.0042	0.0038	0.0044	0.0027	0.0039	0.0029	0.0049	0.0040	0.0053	
PbO	0.0000	0.0019	0.0000	0.0035	0.0020	0.0038	0.0000	0.0021	0.0000	
ThO2	0.0001	0.0013	0.0001	0.0000	0.0014	0.0000	0.0000	0.0014	0.0000	
Ра	0.0000	0.0010	0.0000	0.0014	0.0011	0.0015	0.0018	0.0011	0.0020	
U308	0.0009	0.0002	0.0009	0.0010	0.0002	0.0011	0.0002	0.0002	0.0002	
TGA	4.2630			7.2090			8.1500			
Total	100.0000			100.0000			100.0000			

	46E			47A			47B			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.1629	0.0243	0.1765	0.1812	0.0251	0.1905	0.1015	0.0252	0.1068	
MgO	0.8723	0.0211	0.9451	0.9570	0.0201	1.0060	1.1045	0.0202	1.1625	
Al2O3	23.6030	0.0219	25.5717	12.3013	0.0166	12.9309	16.2618	0.0182	17.1160	
SiO2	59.5938	0.0304	64.5647	75.2509	0.0327	79.1024	69.3563	0.0314	72.9997	
P2O5	0.0469	0.0045	0.0508	0.0275	0.0042	0.0289	0.0403	0.0043	0.0424	
SO3	0.3625	0.0074	0.3927	1.0071	0.0077	1.0586	1.1434	0.0076	1.2035	
Cl	0.0000	0.0098	0.0000	0.0035	0.0094	0.0037	0.0056	0.0093	0.0059	
К2О	2.2961	0.0043	2.4876	1.6995	0.0041	1.7865	3.4755	0.0047	3.6581	
CaO	0.1535	0.0054	0.1663	0.8117	0.0053	0.8532	0.7421	0.0054	0.7811	
TiO2	0.8445	0.0404	0.9149	0.6354	0.0350	0.6679	0.6444	0.0360	0.6783	
V2O5	0.0388	0.0063	0.0420	0.0202	0.0053	0.0212	0.0152	0.0055	0.0160	
Cr2O3	0.0138	0.0016	0.0150	0.0082	0.0015	0.0086	0.0083	0.0015	0.0087	
MnO	0.0187	0.0025	0.0203	0.0066	0.0024	0.0069	0.0063	0.0024	0.0066	
Fe2O3	4.1260	0.0314	4.4702	2.0767	0.0050	2.1830	1.9168	0.0298	2.0175	
Co2O3	0.0000	0.0020	0.0000	0.0026	0.0018	0.0027	0.0030	0.0018	0.0032	
NiO	0.0122	0.0015	0.0132	0.0117	0.0014	0.0123	0.0122	0.0014	0.0128	
CuO	0.0111	0.0013	0.0120	0.0099	0.0012	0.0104	0.0131	0.0012	0.0138	
ZnO	0.0048	0.0011	0.0052	0.0029	0.0010	0.0031	0.0067	0.0010	0.0071	
Ga2O3	0.0040	0.0012	0.0043	0.0028	0.0011	0.0029	0.0020	0.0011	0.0021	
As2O3	0.0126	0.0011	0.0136	0.0024	0.0010	0.0025	0.0000	0.0010	0.0000	
Br	0.0006	0.0007	0.0006	0.0009	0.0007	0.0009	0.0005	0.0007	0.0005	
Rb2O	0.0162	0.0008	0.0176	0.0118	0.0007	0.0124	0.0181	0.0007	0.0190	
SrO	0.0108	0.0007	0.0117	0.0083	0.0007	0.0087	0.0103	0.0007	0.0108	
Y2O3	0.0003	0.0008	0.0003	0.0021	0.0008	0.0022	0.0029	0.0008	0.0031	
ZrO2	0.0227	0.0007	0.0246	0.0479	0.0006	0.0504	0.0276	0.0007	0.0290	
Nb205	0.0013	0.0008	0.0014	0.0012	0.0008	0.0013	0.0017	0.0008	0.0018	
MoO3	0.0005	0.0009	0.0005	0.0004	0.0008	0.0004	0.0000	0.0008	0.0000	
BaO	0.0601	0.0147	0.0651	0.0282	0.0141	0.0296	0.0716	0.0138	0.0754	
HfO2	0.0050	0.0041	0.0054	0.0071	0.0038	0.0075	0.0041	0.0039	0.0043	
PbO	0.0000	0.0021	0.0000	0.0000	0.0020	0.0000	0.0054	0.0020	0.0057	
ThO2	0.0010	0.0014	0.0011	0.0003	0.0014	0.0003	0.0011	0.0014	0.0012	
Ра	0.0052	0.0011	0.0056	0.0034	0.0011	0.0036	0.0064	0.0011	0.0067	
0308	0.0000	0.0002	0.0000	0.0005	0.0002	0.0005	0.0004	0.0002	0.0004	
TGA	7.6990			4.8690			4.9910			
Total	100.0000			100.0000			100.0000			

	47C				47D		47E			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.1520	0.0243	0.1573	0.1522	0.0245	0.1601	0.2071	0.0244	0.2168	
MgO	0.8813	0.0195	0.9118	1.3815	0.0207	1.4534	0.9699	0.0199	1.0151	
Al2O3	13.0249	0.0168	13.4750	18.7714	0.0197	19.7488	15.0919	0.0178	15.7959	
SiO2	76.4710	0.0327	79.1134	66.2925	0.0307	69.7441	73.7003	0.0321	77.1383	
P2O5	0.0255	0.0041	0.0264	0.0290	0.0043	0.0305	0.0284	0.0042	0.0297	
SO3	0.2311	0.0072	0.2391	0.1777	0.0073	0.1869	0.2955	0.0073	0.3093	
Cl	0.0000	0.0095	0.0000	0.0000	0.0096	0.0000	0.0024	0.0094	0.0025	
К2О	3.2322	0.0046	3.3439	4.2258	0.0049	4.4458	2.5643	0.0044	2.6839	
CaO	0.0344	0.0052	0.0356	0.0741	0.0052	0.0780	0.0849	0.0052	0.0889	
TiO2	0.6810	0.0342	0.7045	0.5789	0.0360	0.6090	0.5592	0.0355	0.5853	
V2O5	0.0141	0.0054	0.0146	0.0246	0.0054	0.0259	0.0208	0.0053	0.0218	
Cr2O3	0.0068	0.0015	0.0070	0.0090	0.0016	0.0095	0.0079	0.0015	0.0083	
MnO	0.0054	0.0024	0.0056	0.0068	0.0024	0.0072	0.0059	0.0024	0.0062	
Fe2O3	1.7387	0.0048	1.7988	3.0850	0.0048	3.2456	1.8623	0.0050	1.9492	
Co2O3	0.0019	0.0018	0.0020	0.0030	0.0019	0.0032	0.0000	0.0018	0.0000	
NiO	0.0112	0.0014	0.0116	0.0130	0.0014	0.0137	0.0123	0.0014	0.0129	
CuO	0.0101	0.0012	0.0104	0.0158	0.0012	0.0166	0.0126	0.0012	0.0132	
ZnO	0.0046	0.0010	0.0048	0.0123	0.0010	0.0129	0.0073	0.0010	0.0076	
Ga2O3	0.0018	0.0011	0.0019	0.0043	0.0012	0.0045	0.0028	0.0011	0.0029	
As2O3	0.0000	0.0010	0.0000	0.0158	0.0011	0.0166	0.0000	0.0010	0.0000	
Br	0.0001	0.0007	0.0001	0.0005	0.0007	0.0005	0.0007	0.0007	0.0007	
Rb2O	0.0231	0.0007	0.0239	0.0241	0.0007	0.0254	0.0148	0.0007	0.0155	
SrO	0.0091	0.0007	0.0094	0.0075	0.0007	0.0079	0.0060	0.0007	0.0063	
Y2O3	0.0010	0.0008	0.0010	0.0016	0.0008	0.0017	0.0024	0.0008	0.0025	
ZrO2	0.0245	0.0006	0.0253	0.0178	0.0007	0.0187	0.0381	0.0006	0.0399	
Nb2O5	0.0014	0.0008	0.0014	0.0010	0.0008	0.0011	0.0000	0.0008	0.0000	
MoO3	0.0002	0.0008	0.0002	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	
BaO	0.0561	0.0144	0.0580	0.0789	0.0141	0.0830	0.0310	0.0144	0.0324	
HfO2	0.0027	0.0038	0.0028	0.0042	0.0039	0.0044	0.0049	0.0038	0.0051	
PbO	0.0042	0.0019	0.0043	0.0161	0.0021	0.0169	0.0036	0.0019	0.0038	
ThO2	0.0002	0.0013	0.0002	0.0012	0.0014	0.0013	0.0000	0.0013	0.0000	
Ра	0.0090	0.0010	0.0093	0.0099	0.0011	0.0104	0.0057	0.0011	0.0060	
U308	0.0004	0.0002	0.0004	0.0000	0.0002	0.0000	0.0000	0.0002	0.0000	
TGA	3.3400			4.9490			4.4570			
Total:	100.0000			100.0000			100.0000			

		48A		48B			48C			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.2522	0.0250	0.2661	0.3536	0.0240	0.3740	0.6292	0.0260	0.6659	
MgO	0.4946	0.0190	0.5218	0.8494	0.0205	0.8984	0.3037	0.0210	0.3214	
Al2O3	13.9215	0.0176	14.6881	16.7181	0.0188	17.6820	17.2522	0.0191	18.2576	
SiO2	75.6939	0.0324	79.8619	70.7917	0.0320	74.8734	69.4816	0.0323	73.5310	
P2O5	0.0245	0.0043	0.0258	0.0357	0.0043	0.0378	0.0869	0.0046	0.0920	
SO3	0.7848	0.0075	0.8280	0.4714	0.0073	0.4986	0.1599	0.0075	0.1692	
Cl	0.0000	0.0096	0.0000	0.0003	0.0094	0.0003	0.0000	0.0099	0.0000	
К2О	1.2937	0.0040	1.3649	2.3027	0.0044	2.4355	2.1441	0.0044	2.2691	
CaO	0.4995	0.0052	0.5270	0.1221	0.0052	0.1291	0.3318	0.0055	0.3511	
TiO2	0.5353	0.0348	0.5648	0.7054	0.0352	0.7461	0.6827	0.0368	0.7225	
V2O5	0.0163	0.0053	0.0172	0.0246	0.0055	0.0260	0.0314	0.0055	0.0332	
Cr2O3	0.0078	0.0015	0.0082	0.0096	0.0015	0.0102	0.0102	0.0016	0.0108	
MnO	0.0063	0.0024	0.0066	0.0073	0.0024	0.0077	0.0176	0.0025	0.0186	
Fe2O3	1.1447	0.0294	1.2077	2.0092	0.0049	2.1250	3.1718	0.0052	3.3567	
Co2O3	0.0000	0.0018	0.0000	0.0009	0.0018	0.0010	0.0031	0.0019	0.0033	
NiO	0.0113	0.0014	0.0119	0.0110	0.0014	0.0116	0.0175	0.0014	0.0185	
CuO	0.0105	0.0012	0.0111	0.0116	0.0012	0.0123	0.0134	0.0012	0.0142	
ZnO	0.0017	0.0010	0.0018	0.0066	0.0010	0.0070	0.0164	0.0011	0.0174	
Ga2O3	0.0022	0.0011	0.0023	0.0015	0.0011	0.0016	0.0032	0.0012	0.0034	
As2O3	0.0027	0.0010	0.0029	0.0051	0.0010	0.0054	0.0000	0.0011	0.0000	
Br	0.0008	0.0007	0.0008	0.0003	0.0007	0.0003	0.0005	0.0007	0.0005	
Rb2O	0.0068	0.0007	0.0072	0.0117	0.0007	0.0124	0.0140	0.0008	0.0148	
SrO	0.0033	0.0007	0.0035	0.0084	0.0007	0.0089	0.0156	0.0007	0.0165	
Y2O3	0.0009	0.0007	0.0010	0.0015	0.0008	0.0016	0.0018	0.0008	0.0019	
ZrO2	0.0344	0.0006	0.0363	0.0414	0.0007	0.0438	0.0306	0.0007	0.0324	
Nb2O5	0.0005	0.0008	0.0005	0.0012	0.0008	0.0013	0.0009	0.0008	0.0009	
MoO3	0.0005	0.0008	0.0005	0.0005	0.0008	0.0005	0.0000	0.0008	0.0000	
BaO	0.0208	0.0141	0.0219	0.0284	0.0148	0.0300	0.0561	0.0143	0.0594	
HfO2	0.0065	0.0038	0.0069	0.0025	0.0039	0.0026	0.0077	0.0040	0.0082	
PbO	0.0000	0.0019	0.0000	0.0000	0.0020	0.0000	0.0036	0.0021	0.0038	
ThO2	0.0006	0.0013	0.0006	0.0005	0.0014	0.0005	0.0003	0.0014	0.0003	
Ра	0.0024	0.0010	0.0025	0.0040	0.0011	0.0042	0.0050	0.0011	0.0053	
U3O8	0.0002	0.0002	0.0002	0.0004	0.0002	0.0004	0.0001	0.0002	0.0001	
TGA:	5.2190			5.4510			5.5070			
Total:	100.0000			100.0000			100.0000			

	48D			49A			49B			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.8132	0.0252	0.8611	0.0671	0.0231	0.0705	0.0248	0.0260	0.0260	
MgO	1.8021	0.0211	1.9084	0.7411	0.0199	0.7782	0.6964	0.0202	0.7294	
Al2O3	18.4060	0.0194	19.4913	14.3024	0.0176	15.0177	14.4035	0.0177	15.0868	
SiO2	64.9580	0.0309	68.7881	76.5152	0.0327	80.3419	76.0859	0.0326	79.6953	
P2O5	0.1213	0.0045	0.1285	0.0254	0.0043	0.0267	0.0244	0.0041	0.0256	
SO3	0.4419	0.0075	0.4680	0.0439	0.0068	0.0461	0.1589	0.0072	0.1664	
Cl	0.0000	0.0097	0.0000	0.0065	0.0094	0.0068	0.0020	0.0095	0.0021	
К2О	2.7995	0.0046	2.9646	1.5159	0.0040	1.5917	1.7820	0.0041	1.8665	
CaO	0.3228	0.0054	0.3418	0.2969	0.0051	0.3118	0.4072	0.0052	0.4265	
TiO2	0.6185	0.0382	0.6550	0.5522	0.0357	0.5798	0.5804	0.0354	0.6079	
V2O5	0.0164	0.0059	0.0174	0.0060	0.0056	0.0063	0.0209	0.0053	0.0219	
Cr2O3	0.0110	0.0016	0.0117	0.0079	0.0015	0.0083	0.0081	0.0015	0.0085	
MnO	0.0280	0.0024	0.0297	0.0076	0.0023	0.0080	0.0058	0.0023	0.0061	
Fe2O3	3.8955	0.0304	4.1252	1.0227	0.0294	1.0738	1.1283	0.0048	1.1818	
Co2O3	0.0070	0.0019	0.0074	0.0001	0.0018	0.0001	0.0000	0.0018	0.0000	
NiO	0.0174	0.0014	0.0184	0.0102	0.0014	0.0107	0.0110	0.0014	0.0115	
CuO	0.0124	0.0012	0.0131	0.0094	0.0012	0.0099	0.0110	0.0012	0.0115	
ZnO	0.0199	0.0011	0.0211	0.0020	0.0010	0.0021	0.0016	0.0010	0.0017	
Ga2O3	0.0043	0.0012	0.0046	0.0022	0.0011	0.0023	0.0024	0.0011	0.0025	
As2O3	0.0034	0.0010	0.0036	0.0007	0.0010	0.0007	0.0000	0.0010	0.0000	
Br	0.0008	0.0007	0.0008	0.0003	0.0007	0.0003	0.0002	0.0007	0.0002	
Rb2O	0.0180	0.0008	0.0191	0.0098	0.0007	0.0103	0.0111	0.0007	0.0116	
SrO	0.0132	0.0007	0.0140	0.0049	0.0007	0.0051	0.0044	0.0007	0.0046	
Y2O3	0.0033	0.0008	0.0035	0.0016	0.0007	0.0017	0.0013	0.0007	0.0014	
ZrO2	0.0233	0.0007	0.0247	0.0435	0.0006	0.0457	0.0474	0.0006	0.0496	
Nb2O5	0.0008	0.0008	0.0009	0.0010	0.0008	0.0010	0.0012	0.0008	0.0013	
MoO3	0.0006	0.0009	0.0006	0.0001	0.0008	0.0001	0.0004	0.0008	0.0004	
BaO	0.0599	0.0143	0.0634	0.0308	0.0138	0.0323	0.0404	0.0137	0.0423	
HfO2	0.0058	0.0040	0.0061	0.0054	0.0038	0.0057	0.0032	0.0038	0.0034	
PbO	0.0000	0.0020	0.0000	0.0000	0.0019	0.0000	0.0031	0.0019	0.0032	
ThO2	0.0011	0.0014	0.0012	0.0005	0.0013	0.0005	0.0006	0.0013	0.0006	
Ра	0.0063	0.0011	0.0067	0.0036	0.0010	0.0038	0.0032	0.0010	0.0034	
U308	0.0000	0.0002	0.0000	0.0001	0.0002	0.0001	0.0000	0.0002	0.0000	
TGA:	5.5680			4.7630			4.5290			
Total:	100.0000			100.0000			100.0000			

	50A			50B			51A			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.0752	0.0254	0.0791	0.0730	0.0258	0.0771	0.0922	0.0248	0.0996	
MgO	0.7412	0.0196	0.7795	0.9253	0.0201	0.9774	0.1449	0.0207	0.1566	
Al2O3	13.9884	0.0175	14.7104	19.4497	0.0197	20.5447	21.2322	0.0210	22.9416	
SiO2	75.7138	0.0329	79.6216	67.2876	0.0313	71.0759	66.0894	0.0312	71.4102	
P2O5	0.0233	0.0043	0.0245	0.0275	0.0042	0.0290	0.0327	0.0044	0.0353	
SO3	0.2707	0.0073	0.2847	1.3196	0.0078	1.3939	0.7346	0.0076	0.7937	
Cl	0.0111	0.0096	0.0117	0.0056	0.0094	0.0059	0.0027	0.0096	0.0029	
К2О	1.5304	0.0040	1.6094	2.3833	0.0044	2.5175	1.3116	0.0042	1.4172	
CaO	0.7748	0.0053	0.8148	0.9677	0.0054	1.0222	0.4497	0.0055	0.4859	
TiO2	0.6890	0.0356	0.7246	0.6995	0.0357	0.7389	0.8913	0.0386	0.9631	
V2O5	0.0180	0.0055	0.0189	0.0221	0.0055	0.0233	0.0218	0.0061	0.0236	
Cr2O3	0.0074	0.0015	0.0078	0.0092	0.0016	0.0097	0.0126	0.0016	0.0136	
MnO	0.0111	0.0024	0.0117	0.0042	0.0024	0.0044	0.0032	0.0025	0.0035	
Fe2O3	1.1222	0.0299	1.1801	1.3549	0.0048	1.4312	1.3913	0.0051	1.5033	
Co2O3	0.0017	0.0018	0.0018	0.0027	0.0018	0.0028	0.0016	0.0018	0.0017	
NiO	0.0114	0.0014	0.0120	0.0119	0.0014	0.0126	0.0107	0.0014	0.0116	
CuO	0.0095	0.0012	0.0100	0.0111	0.0012	0.0117	0.0093	0.0012	0.0101	
ZnO	0.0015	0.0010	0.0016	0.0017	0.0010	0.0018	0.0031	0.0010	0.0034	
Ga2O3	0.0037	0.0011	0.0039	0.0028	0.0011	0.0030	0.0047	0.0012	0.0051	
As2O3	0.0000	0.0010	0.0000	0.0000	0.0010	0.0000	0.0000	0.0010	0.0000	
Br	0.0006	0.0007	0.0006	0.0000	0.0007	0.0000	0.0000	0.0007	0.0000	
Rb2O	0.0107	0.0007	0.0113	0.0153	0.0007	0.0162	0.0099	0.0007	0.0107	
SrO	0.0060	0.0007	0.0063	0.0060	0.0007	0.0063	0.0089	0.0007	0.0096	
Y2O3	0.0013	0.0008	0.0014	0.0016	0.0008	0.0017	0.0015	0.0008	0.0016	
ZrO2	0.0290	0.0006	0.0305	0.0253	0.0007	0.0267	0.0304	0.0007	0.0329	
Nb2O5	0.0015	0.0008	0.0016	0.0018	0.0008	0.0019	0.0028	0.0008	0.0030	
MoO3	0.0010	0.0008	0.0011	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	
BaO	0.0268	0.0141	0.0282	0.0469	0.0141	0.0495	0.0411	0.0141	0.0444	
HfO2	0.0044	0.0038	0.0046	0.0044	0.0039	0.0047	0.0084	0.0039	0.0091	
PbO	0.0023	0.0019	0.0024	0.0031	0.0020	0.0033	0.0024	0.0020	0.0026	
ThO2	0.0000	0.0013	0.0000	0.0014	0.0014	0.0015	0.0004	0.0014	0.0004	
Ра	0.0035	0.0011	0.0037	0.0049	0.0011	0.0052	0.0034	0.0011	0.0037	
U308	0.0002	0.0002	0.0002	0.0000	0.0002	0.0000	0.0000	0.0002	0.0000	
TGA	4.9080			5.3300			7.4510			
Total:	100.0000			100.0000			100.0000			

		51B		51C			51D			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.1088	0.0234	0.1182	0.0751	0.0255	0.0805	0.0879	0.0262	0.0952	
MgO	0.7700	0.0207	0.8364	0.1100	0.0206	0.1179	0.7634	0.0203	0.8272	
Al2O3	23.9860	0.0218	26.0536	19.5410	0.0199	20.9506	23.4571	0.0220	25.4184	
SiO2	63.1203	0.0312	68.5613	70.2099	0.0323	75.2744	63.1739	0.0306	68.4559	
P2O5	0.0354	0.0044	0.0385	0.0362	0.0044	0.0388	0.0376	0.0044	0.0407	
SO3	0.0826	0.0072	0.0897	0.1082	0.0074	0.1160	0.1133	0.0073	0.1228	
Cl	0.0095	0.0094	0.0103	0.0012	0.0098	0.0013	0.0000	0.0098	0.0000	
К2О	1.6006	0.0041	1.7386	1.0243	0.0040	1.0982	1.9944	0.0043	2.1612	
CaO	0.1089	0.0053	0.1183	0.0939	0.0053	0.1007	0.0717	0.0053	0.0777	
TiO2	0.7439	0.0366	0.8080	0.7430	0.0363	0.7966	0.8280	0.0369	0.8972	
V2O5	0.0342	0.0056	0.0372	0.0292	0.0055	0.0313	0.0338	0.0057	0.0366	
Cr2O3	0.0122	0.0016	0.0132	0.0098	0.0016	0.0105	0.0130	0.0016	0.0141	
MnO	0.0053	0.0025	0.0058	0.0061	0.0024	0.0065	0.0051	0.0024	0.0055	
Fe2O3	1.3231	0.0049	1.4371	1.1558	0.0051	1.2392	1.5521	0.0050	1.6819	
Co2O3	0.0018	0.0018	0.0020	0.0018	0.0018	0.0019	0.0023	0.0018	0.0025	
NiO	0.0126	0.0014	0.0137	0.0117	0.0014	0.0125	0.0142	0.0014	0.0154	
CuO	0.0098	0.0012	0.0106	0.0112	0.0012	0.0120	0.0131	0.0012	0.0142	
ZnO	0.0041	0.0010	0.0045	0.0046	0.0010	0.0049	0.0172	0.0010	0.0186	
Ga2O3	0.0034	0.0012	0.0037	0.0034	0.0012	0.0036	0.0049	0.0011	0.0053	
As2O3	0.0000	0.0010	0.0000	0.0000	0.0010	0.0000	0.0014	0.0010	0.0015	
Br	0.0005	0.0007	0.0005	0.0002	0.0007	0.0002	0.0005	0.0007	0.0005	
Rb2O	0.0119	0.0007	0.0129	0.0073	0.0007	0.0078	0.0127	0.0007	0.0138	
SrO	0.0087	0.0007	0.0095	0.0081	0.0007	0.0087	0.0082	0.0007	0.0089	
Y2O3	0.0004	0.0008	0.0004	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	
ZrO2	0.0209	0.0007	0.0227	0.0378	0.0007	0.0405	0.0220	0.0007	0.0238	
Nb2O5	0.0015	0.0008	0.0016	0.0008	0.0008	0.0009	0.0000	0.0008	0.0000	
MoO3	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	
BaO	0.0346	0.0143	0.0376	0.0288	0.0141	0.0309	0.0451	0.0146	0.0489	
HfO2	0.0042	0.0039	0.0046	0.0047	0.0039	0.0050	0.0057	0.0039	0.0062	
PbO	0.0048	0.0020	0.0052	0.0048	0.0020	0.0051	0.0000	0.0020	0.0000	
ThO2	0.0004	0.0014	0.0004	0.0004	0.0014	0.0004	0.0000	0.0014	0.0000	
Ра	0.0036	0.0011	0.0039	0.0023	0.0011	0.0025	0.0049	0.0011	0.0053	
U3O8	0.0000	0.0002	0.0000	0.0006	0.0002	0.0006	0.0006	0.0002	0.0007	
TGA	7.9360			6.7280			7.7160			
Total	100.0000			100.0000			100.0000			

		53A		53B			55A			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.0567	0.0241	0.0591	0.0851	0.0230	0.0879	0.0269	0.0258	0.0288	
MgO	0.4757	0.0186	0.4955	0.5378	0.0180	0.5558	0.6820	0.0197	0.7289	
Al2O3	12.4978	0.0165	13.0187	12.2022	0.0165	12.6107	16.4334	0.0189	17.5623	
SiO2	78.8745	0.0325	82.1618	79.7750	0.0329	82.4454	67.5675	0.0316	72.2091	
P2O5	0.0225	0.0040	0.0234	0.0218	0.0043	0.0225	0.0279	0.0044	0.0298	
SO3	0.0796	0.0070	0.0829	0.0685	0.0071	0.0708	2.7506	0.0082	2.9396	
Cl	0.0000	0.0092	0.0000	0.0000	0.0095	0.0000	0.0000	0.0098	0.0000	
К2О	2.0236	0.0041	2.1079	2.3191	0.0043	2.3967	1.7153	0.0041	1.8331	
CaO	0.4647	0.0050	0.4841	0.1382	0.0051	0.1428	2.0466	0.0055	2.1872	
TiO2	0.4267	0.0338	0.4445	0.4561	0.0349	0.4714	0.6250	0.0364	0.6679	
V2O5	0.0122	0.0051	0.0127	0.0114	0.0053	0.0118	0.0184	0.0055	0.0197	
Cr2O3	0.0066	0.0015	0.0069	0.0067	0.0015	0.0069	0.0093	0.0016	0.0099	
MnO	0.0071	0.0023	0.0074	0.0083	0.0024	0.0086	0.0190	0.0025	0.0203	
Fe2O3	0.9028	0.0046	0.9404	0.9836	0.0048	1.0165	1.4201	0.0301	1.5177	
Co2O3	0.0000	0.0017	0.0000	0.0007	0.0018	0.0007	0.0092	0.0019	0.0098	
NiO	0.0107	0.0013	0.0111	0.0125	0.0013	0.0129	0.0339	0.0014	0.0362	
CuO	0.0108	0.0011	0.0112	0.0102	0.0012	0.0105	0.0117	0.0012	0.0125	
ZnO	0.0014	0.0010	0.0015	0.0027	0.0010	0.0028	0.0330	0.0010	0.0353	
Ga2O3	0.0010	0.0011	0.0010	0.0010	0.0011	0.0010	0.0028	0.0012	0.0030	
As2O3	0.0012	0.0010	0.0013	0.0000	0.0010	0.0000	0.0000	0.0010	0.0000	
Br	0.0004	0.0007	0.0004	0.0000	0.0007	0.0000	0.0006	0.0007	0.0006	
Rb2O	0.0094	0.0007	0.0098	0.0114	0.0007	0.0118	0.0102	0.0007	0.0109	
SrO	0.0041	0.0006	0.0043	0.0059	0.0006	0.0061	0.0237	0.0007	0.0253	
Y2O3	0.0014	0.0007	0.0015	0.0013	0.0007	0.0013	0.0022	0.0008	0.0023	
ZrO2	0.0414	0.0006	0.0431	0.0373	0.0006	0.0386	0.0429	0.0007	0.0458	
Nb2O5	0.0004	0.0007	0.0004	0.0007	0.0007	0.0007	0.0018	0.0008	0.0019	
MoO3	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	
BaO	0.0550	0.0131	0.0573	0.0519	0.0139	0.0536	0.0419	0.0140	0.0448	
HfO2	0.0067	0.0036	0.0070	0.0059	0.0037	0.0061	0.0078	0.0039	0.0083	
PbO	0.0011	0.0019	0.0011	0.0014	0.0019	0.0014	0.0047	0.0020	0.0050	
ThO2	0.0002	0.0013	0.0002	0.0000	0.0013	0.0000	0.0000	0.0014	0.0000	
Ра	0.0034	0.0010	0.0035	0.0040	0.0010	0.0041	0.0037	0.0011	0.0040	
U3O8	0.0000	0.0002	0.0000	0.0006	0.0002	0.0006	0.0000	0.0002	0.0000	
TGA	4.0010			3.2390			6.4280			
Total	100.0000			100.0000			100.0000			

		56A			56B		56C			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.2154	0.0270	0.2424	0.3041	0.0237	0.3184	0.3024	0.0254	0.3303	
MgO	4.5208	0.0225	5.0876	1.0792	0.0201	1.1298	0.6089	0.0215	0.6650	
Al2O3	13.4267	0.0182	15.1100	15.5012	0.0181	16.2281	17.9259	0.0204	19.5781	
SiO2	55.4659	0.0300	62.4195	72.6373	0.0323	76.0433	69.6582	0.0332	76.0784	
P2O5	0.1709	0.0050	0.1923	0.0337	0.0041	0.0353	0.0315	0.0046	0.0344	
SO3	1.6844	0.0081	1.8956	0.2981	0.0072	0.3121	0.2985	0.0077	0.3260	
Cl	0.0000	0.0104	0.0000	0.0000	0.0095	0.0000	0.0028	0.0102	0.0031	
К2О	2.6032	0.0048	2.9296	2.8799	0.0042	3.0149	0.7598	0.0041	0.8298	
CaO	6.1934	0.0063	6.9699	0.1442	0.0052	0.1510	0.1231	0.0056	0.1344	
TiO2	0.5540	0.0385	0.6235	0.6345	0.0349	0.6642	0.8693	0.0375	0.9494	
V2O5	0.0220	0.0058	0.0248	0.0139	0.0054	0.0145	0.0160	0.0058	0.0175	
Cr2O3	0.0091	0.0017	0.0102	0.0069	0.0015	0.0072	0.0083	0.0016	0.0091	
MnO	0.0602	0.0026	0.0678	0.0553	0.0024	0.0579	0.0041	0.0025	0.0045	
Fe2O3	3.7808	0.0056	4.2548	1.7862	0.0290	1.8700	0.8295	0.0052	0.9060	
Co2O3	0.0035	0.0020	0.0039	0.0008	0.0018	0.0008	0.0005	0.0019	0.0006	
NiO	0.0134	0.0015	0.0151	0.0119	0.0014	0.0125	0.0133	0.0015	0.0145	
CuO	0.0128	0.0013	0.0144	0.0104	0.0012	0.0109	0.0110	0.0013	0.0120	
ZnO	0.0132	0.0011	0.0149	0.0092	0.0010	0.0096	0.0064	0.0011	0.0070	
Ga2O3	0.0028	0.0012	0.0032	0.0016	0.0011	0.0017	0.0046	0.0012	0.0050	
As2O3	0.0000	0.0011	0.0000	0.0000	0.0010	0.0000	0.0032	0.0011	0.0035	
Br	0.0004	0.0008	0.0005	0.0006	0.0007	0.0006	0.0004	0.0007	0.0004	
Rb2O	0.0155	0.0008	0.0174	0.0159	0.0007	0.0166	0.0057	0.0008	0.0062	
SrO	0.0131	0.0007	0.0147	0.0061	0.0007	0.0064	0.0050	0.0007	0.0055	
Y2O3	0.0019	0.0008	0.0021	0.0012	0.0008	0.0013	0.0018	0.0008	0.0020	
ZrO2	0.0225	0.0007	0.0253	0.0319	0.0006	0.0334	0.0450	0.0007	0.0492	
Nb2O5	0.0004	0.0009	0.0004	0.0014	0.0008	0.0015	0.0013	0.0008	0.0014	
MoO3	0.0000	0.0009	0.0000	0.0000	0.0008	0.0000	0.0004	0.0009	0.0004	
BaO	0.0416	0.0155	0.0468	0.0416	0.0146	0.0435	0.0163	0.0151	0.0178	
HfO2	0.0020	0.0043	0.0023	0.0038	0.0038	0.0040	0.0049	0.0041	0.0053	
PbO	0.0042	0.0022	0.0047	0.0045	0.0019	0.0047	0.0000	0.0021	0.0000	
ThO2	0.0003	0.0015	0.0003	0.0000	0.0013	0.0000	0.0010	0.0014	0.0011	
Ра	0.0050	0.0012	0.0056	0.0053	0.0011	0.0056	0.0018	0.0011	0.0020	
U308	0.0004	0.0002	0.0005	0.0002	0.0002	0.0002	0.0001	0.0002	0.0001	
TGA	11.1400			4.4790			8.4390			
Total	100.0000			100.0000			100.0000			

	56D			56E			56F			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.1910	0.0247	0.2022	0.2522	0.0235	0.2643	0.1980	0.0258	0.2121	
MgO	0.3585	0.0196	0.3796	0.4879	0.0188	0.5113	0.7939	0.0197	0.8503	
Al2O3	13.1411	0.0171	13.9135	9.8967	0.0156	10.3709	18.6681	0.0197	19.9935	
SiO2	78.0718	0.0332	82.6602	81.5885	0.0336	85.4974	68.5070	0.0319	73.3708	
P2O5	0.0322	0.0042	0.0341	0.0244	0.0042	0.0256	0.0341	0.0043	0.0365	
SO3	0.4640	0.0073	0.4913	0.8730	0.0073	0.9148	0.7403	0.0075	0.7929	
Cl	0.0000	0.0094	0.0000	0.0019	0.0094	0.0020	0.0006	0.0097	0.0006	
К2О	0.1486	0.0036	0.1573	0.4187	0.0037	0.4388	1.5958	0.0042	1.7091	
CaO	0.1177	0.0051	0.1246	0.0420	0.0051	0.0440	0.1200	0.0052	0.1285	
TiO2	1.1245	0.0347	1.1906	0.9661	0.0347	1.0124	0.6754	0.0357	0.7234	
V2O5	0.0166	0.0054	0.0176	0.0200	0.0053	0.0210	0.0279	0.0054	0.0299	
Cr2O3	0.0071	0.0015	0.0075	0.0073	0.0015	0.0076	0.0098	0.0015	0.0105	
MnO	0.0036	0.0024	0.0038	0.0066	0.0023	0.0069	0.0077	0.0024	0.0082	
Fe2O3	0.6535	0.0049	0.6919	0.7073	0.0285	0.7412	1.8243	0.0302	1.9538	
Co2O3	0.0026	0.0018	0.0027	0.0043	0.0017	0.0045	0.0019	0.0019	0.0020	
NiO	0.0155	0.0014	0.0164	0.0178	0.0013	0.0187	0.0148	0.0014	0.0159	
CuO	0.0108	0.0012	0.0114	0.0107	0.0012	0.0112	0.0105	0.0012	0.0112	
ZnO	0.0043	0.0010	0.0046	0.0072	0.0010	0.0075	0.0134	0.0010	0.0143	
Ga2O3	0.0034	0.0011	0.0036	0.0019	0.0011	0.0020	0.0033	0.0011	0.0035	
As2O3	0.0000	0.0010	0.0000	0.0005	0.0010	0.0005	0.0132	0.0010	0.0141	
Br	0.0003	0.0007	0.0003	0.0002	0.0007	0.0002	0.0000	0.0007	0.0000	
Rb2O	0.0000	0.0007	0.0000	0.0045	0.0007	0.0047	0.0101	0.0007	0.0108	
SrO	0.0038	0.0007	0.0040	0.0042	0.0006	0.0044	0.0070	0.0007	0.0075	
Y2O3	0.0042	0.0007	0.0044	0.0027	0.0007	0.0028	0.0018	0.0008	0.0019	
ZrO2	0.0559	0.0006	0.0592	0.0548	0.0006	0.0574	0.0374	0.0007	0.0401	
Nb2O5	0.0026	0.0008	0.0028	0.0031	0.0007	0.0032	0.0007	0.0008	0.0007	
MoO3	0.0004	0.0008	0.0004	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	
BaO	0.0013	0.0142	0.0014	0.0144	0.0138	0.0151	0.0341	0.0140	0.0365	
HfO2	0.0076	0.0038	0.0080	0.0059	0.0037	0.0062	0.0011	0.0039	0.0012	
PbO	0.0054	0.0019	0.0057	0.0019	0.0019	0.0020	0.0000	0.0020	0.0000	
ThO2	0.0007	0.0013	0.0007	0.0000	0.0013	0.0000	0.0000	0.0014	0.0000	
Ра	0.0000	0.0010	0.0000	0.0010	0.0010	0.0011	0.0040	0.0011	0.0043	
U3O8	0.0002	0.0002	0.0002	0.0003	0.0002	0.0003	0.0000	0.0002	0.0000	
TGA	5.5510			4.5720			6.6290			
Total:	100.0000			100.0000			100.0000			

	56G			56H			561			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.2525	0.0277	0.2765	0.1635	0.0252	0.1728	0.1534	0.0262	0.1625	
MgO	1.1476	0.0208	1.2568	0.5280	0.0189	0.5582	1.1390	0.0200	1.2067	
Al2O3	22.8501	0.0220	25.0234	14.6395	0.0177	15.4757	16.4683	0.0187	17.4468	
SiO2	61.0016	0.0309	66.8035	75.0215	0.0327	79.3064	69.5043	0.0315	73.6340	
P2O5	0.0325	0.0044	0.0356	0.0317	0.0042	0.0335	0.0548	0.0044	0.0581	
SO3	0.9947	0.0077	1.0893	0.7035	0.0075	0.7437	0.3625	0.0074	0.3840	
Cl	0.0000	0.0100	0.0000	0.0088	0.0094	0.0093	0.0000	0.0097	0.0000	
К2О	2.1861	0.0046	2.3940	1.7411	0.0042	1.8405	3.4121	0.0048	3.6148	
CaO	0.0792	0.0054	0.0867	0.0553	0.0052	0.0585	0.1362	0.0053	0.1443	
TiO2	0.5791	0.0368	0.6342	0.5781	0.0356	0.6111	0.6861	0.0360	0.7269	
V2O5	0.0289	0.0056	0.0316	0.0166	0.0054	0.0175	0.0233	0.0056	0.0247	
Cr2O3	0.0097	0.0016	0.0106	0.0095	0.0015	0.0100	0.0098	0.0016	0.0104	
MnO	0.0103	0.0025	0.0113	0.0082	0.0024	0.0087	0.0070	0.0024	0.0074	
Fe2O3	1.9853	0.0313	2.1741	0.9416	0.0297	0.9954	2.2573	0.0050	2.3914	
Co2O3	0.0036	0.0019	0.0039	0.0022	0.0018	0.0023	0.0025	0.0018	0.0027	
NiO	0.0179	0.0014	0.0196	0.0120	0.0014	0.0127	0.0109	0.0014	0.0116	
CuO	0.0111	0.0012	0.0122	0.0105	0.0012	0.0111	0.0111	0.0012	0.0118	
ZnO	0.0281	0.0011	0.0308	0.0072	0.0010	0.0076	0.0081	0.0010	0.0086	
Ga2O3	0.0041	0.0012	0.0045	0.0017	0.0011	0.0018	0.0037	0.0011	0.0039	
As2O3	0.0021	0.0011	0.0023	0.0014	0.0010	0.0015	0.0008	0.0010	0.0009	
Br	0.0004	0.0007	0.0004	0.0002	0.0007	0.0002	0.0008	0.0007	0.0008	
Rb2O	0.0151	0.0008	0.0165	0.0089	0.0007	0.0094	0.0172	0.0007	0.0182	
SrO	0.0060	0.0007	0.0066	0.0050	0.0007	0.0053	0.0078	0.0007	0.0083	
Y2O3	0.0018	0.0008	0.0020	0.0026	0.0007	0.0028	0.0039	0.0008	0.0041	
ZrO2	0.0173	0.0007	0.0190	0.0512	0.0006	0.0541	0.0273	0.0007	0.0289	
Nb2O5	0.0002	0.0008	0.0002	0.0005	0.0008	0.0005	0.0011	0.0008	0.0012	
MoO3	0.0000	0.0008	0.0000	0.0002	0.0008	0.0002	0.0000	0.0008	0.0000	
BaO	0.0384	0.0146	0.0420	0.0374	0.0140	0.0395	0.0555	0.0145	0.0588	
HfO2	0.0058	0.0040	0.0064	0.0056	0.0038	0.0059	0.0050	0.0039	0.0053	
PbO	0.0000	0.0020	0.0000	0.0000	0.0019	0.0000	0.0008	0.0020	0.0009	
ThO2	0.0005	0.0014	0.0005	0.0000	0.0013	0.0000	0.0000	0.0014	0.0000	
Ра	0.0050	0.0011	0.0055	0.0030	0.0011	0.0032	0.0068	0.0011	0.0072	
U308	0.0000	0.0002	0.0000	0.0006	0.0002	0.0006	0.0004	0.0002	0.0004	
TGA	8.6850			5.4030			5.6080			
Total	100.0000			100.0000			100.0000			

	58A			59A			59B			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.9889	0.0272	1.0330	0.7529	0.0281	0.8488	1.0380	0.0285	1.1408	
MgO	2.4338	0.0210	2.5423	4.6270	0.0228	5.2165	4.1388	0.0220	4.5486	
Al2O3	15.8363	0.0181	16.5424	13.1610	0.0179	14.8376	13.8434	0.0180	15.2142	
SiO2	67.5100	0.0311	70.5198	53.6467	0.0296	60.4811	57.1928	0.0297	62.8563	
P2O5	0.0981	0.0044	0.1025	0.1257	0.0047	0.1417	0.1158	0.0043	0.1273	
SO3	0.2015	0.0072	0.2105	0.0650	0.0072	0.0733	0.1154	0.0072	0.1268	
Cl	0.0000	0.0096	0.0000	0.0000	0.0101	0.0000	0.0109	0.0098	0.0120	
К2О	3.6403	0.0047	3.8026	3.4228	0.0050	3.8588	3.8298	0.0050	4.2090	
CaO	0.4296	0.0053	0.4488	7.9607	0.0064	8.9749	5.9080	0.0061	6.4930	
TiO2	0.5516	0.0361	0.5762	0.4447	0.0389	0.5014	0.4748	0.0375	0.5218	
V2O5	0.0184	0.0054	0.0192	0.0183	0.0059	0.0206	0.0215	0.0057	0.0236	
Cr2O3	0.0096	0.0015	0.0100	0.0091	0.0017	0.0103	0.0087	0.0016	0.0096	
MnO	0.0209	0.0024	0.0218	0.0916	0.0026	0.1033	0.1139	0.0025	0.1252	
Fe2O3	3.8127	0.0304	3.9827	4.2026	0.0057	4.7380	3.9851	0.0051	4.3797	
Co2O3	0.0022	0.0019	0.0023	0.0035	0.0020	0.0039	0.0031	0.0019	0.0034	
NiO	0.0144	0.0014	0.0150	0.0141	0.0015	0.0159	0.0140	0.0015	0.0154	
CuO	0.0104	0.0012	0.0109	0.0128	0.0013	0.0144	0.0122	0.0013	0.0134	
ZnO	0.0160	0.0010	0.0167	0.0119	0.0011	0.0134	0.0116	0.0011	0.0127	
Ga2O3	0.0029	0.0011	0.0030	0.0029	0.0013	0.0033	0.0022	0.0012	0.0024	
As2O3	0.0020	0.0010	0.0021	0.0000	0.0011	0.0000	0.0017	0.0011	0.0019	
Br	0.0000	0.0007	0.0000	0.0004	0.0008	0.0004	0.0004	0.0007	0.0004	
Rb2O	0.0219	0.0007	0.0229	0.0195	0.0008	0.0220	0.0215	0.0008	0.0236	
SrO	0.0102	0.0007	0.0107	0.0136	0.0007	0.0153	0.0116	0.0007	0.0128	
Y2O3	0.0009	0.0008	0.0009	0.0016	0.0009	0.0018	0.0014	0.0008	0.0015	
ZrO2	0.0200	0.0007	0.0209	0.0134	0.0007	0.0151	0.0149	0.0007	0.0164	
Nb2O5	0.0004	0.0008	0.0004	0.0004	0.0009	0.0004	0.0000	0.0008	0.0000	
MoO3	0.0001	0.0008	0.0001	0.0000	0.0009	0.0000	0.0000	0.0009	0.0000	
BaO	0.0491	0.0145	0.0513	0.0630	0.0152	0.0710	0.0717	0.0148	0.0788	
HfO2	0.0054	0.0039	0.0056	0.0020	0.0043	0.0023	0.0036	0.0041	0.0040	
PbO	0.0000	0.0020	0.0000	0.0054	0.0022	0.0061	0.0008	0.0021	0.0009	
ThO2	0.0015	0.0014	0.0016	0.0004	0.0015	0.0005	0.0026	0.0015	0.0029	
Ра	0.0083	0.0011	0.0087	0.0070	0.0012	0.0079	0.0086	0.0011	0.0095	
U3O8	0.0000	0.0002	0.0000	0.0000	0.0002	0.0000	0.0003	0.0002	0.0003	
TGA	4.2680			11.3000			9.0100			
Total	100.0000			100.0000			100.0000			

	59C			59D			59E			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.9209	0.0260	0.9690	0.6134	0.0280	0.6530	1.0067	0.0274	1.0676	
MgO	1.5980	0.0206	1.6815	2.1036	0.0208	2.2396	2.2997	0.0221	2.4387	
Al2O3	13.6588	0.0172	14.3728	20.8053	0.0206	22.1501	19.3705	0.0199	20.5416	
SiO2	71.3836	0.0321	75.1154	61.5458	0.0304	65.5237	61.6979	0.0304	65.4279	
P2O5	0.1275	0.0044	0.1342	0.0593	0.0043	0.0631	0.1575	0.0043	0.1670	
SO3	0.0875	0.0071	0.0921	0.1102	0.0074	0.1173	0.0739	0.0074	0.0784	
Cl	0.0048	0.0097	0.0051	0.0018	0.0096	0.0019	0.0000	0.0102	0.0000	
К2О	2.7569	0.0045	2.9010	3.4038	0.0044	3.6238	3.4126	0.0047	3.6189	
CaO	0.5657	0.0053	0.5953	0.2207	0.0054	0.2350	0.4791	0.0055	0.5081	
TiO2	0.5614	0.0356	0.5907	0.7094	0.0387	0.7552	0.7645	0.0363	0.8107	
V2O5	0.0204	0.0054	0.0215	0.0277	0.0059	0.0295	0.0381	0.0056	0.0404	
Cr2O3	0.0086	0.0015	0.0090	0.0136	0.0016	0.0145	0.0116	0.0016	0.0123	
MnO	0.0194	0.0024	0.0204	0.0288	0.0024	0.0307	0.0476	0.0025	0.0505	
Fe2O3	3.1215	0.0294	3.2847	4.0317	0.0303	4.2923	4.7084	0.0050	4.9931	
Co2O3	0.0056	0.0018	0.0059	0.0069	0.0019	0.0073	0.0030	0.0020	0.0032	
NiO	0.0207	0.0014	0.0218	0.0242	0.0014	0.0258	0.0184	0.0014	0.0195	
CuO	0.0100	0.0012	0.0105	0.0157	0.0012	0.0167	0.0150	0.0012	0.0159	
ZnO	0.0201	0.0010	0.0211	0.0293	0.0010	0.0312	0.0213	0.0011	0.0226	
Ga2O3	0.0029	0.0011	0.0031	0.0037	0.0012	0.0039	0.0041	0.0012	0.0043	
As2O3	0.0027	0.0010	0.0028	0.0048	0.0011	0.0051	0.0000	0.0011	0.0000	
Br	0.0005	0.0007	0.0005	0.0000	0.0007	0.0000	0.0003	0.0007	0.0003	
Rb2O	0.0160	0.0007	0.0168	0.0169	0.0007	0.0180	0.0158	0.0008	0.0168	
SrO	0.0128	0.0007	0.0135	0.0140	0.0007	0.0149	0.0184	0.0007	0.0195	
Y2O3	0.0025	0.0008	0.0026	0.0037	0.0008	0.0039	0.0028	0.0008	0.0030	
ZrO2	0.0349	0.0007	0.0367	0.0159	0.0007	0.0169	0.0154	0.0007	0.0163	
Nb2O5	0.0004	0.0008	0.0004	0.0011	0.0008	0.0012	0.0009	0.0008	0.0010	
MoO3	0.0003	0.0008	0.0003	0.0000	0.0008	0.0000	0.0000	0.0009	0.0000	
BaO	0.0497	0.0146	0.0523	0.1067	0.0146	0.1136	0.1001	0.0146	0.1062	
HfO2	0.0055	0.0039	0.0058	0.0056	0.0040	0.0060	0.0027	0.0040	0.0029	
PbO	0.0000	0.0019	0.0000	0.0000	0.0020	0.0000	0.0053	0.0020	0.0056	
ThO2	0.0003	0.0014	0.0003	0.0006	0.0014	0.0006	0.0009	0.0014	0.0010	
Ра	0.0051	0.0011	0.0054	0.0049	0.0011	0.0052	0.0059	0.0011	0.0063	
U3O8	0.0001	0.0002	0.0001	0.0000	0.0002	0.0000	0.0004	0.0002	0.0004	
TGA	4.9680			6.0710			5.7010			
Total:	100.0000			100.0000			100.0000			

		59F		59G			59H		
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %
Na2O	1.0714	0.0265	1.1407	0.1539	0.0231	0.1593	0.3276	0.0257	0.3502
MgO	2.5967	0.0219	2.7648	0.0375	0.0183	0.0388	0.6034	0.0210	0.6450
Al2O3	19.6653	0.0201	20.9381	9.8675	0.0152	10.2142	19.4124	0.0201	20.7501
SiO2	60.2990	0.0304	64.2018	84.2043	0.0337	87.1626	67.3555	0.0313	71.9972
P2O5	0.1529	0.0047	0.1628	0.0202	0.0042	0.0209	0.0296	0.0044	0.0316
SO3	0.2511	0.0075	0.2673	0.0490	0.0070	0.0507	0.0758	0.0072	0.0810
Cl	0.0045	0.0098	0.0048	0.0009	0.0094	0.0009	0.0027	0.0097	0.0029
К2О	3.3523	0.0048	3.5693	0.3283	0.0036	0.3398	1.2708	0.0041	1.3584
CaO	0.3701	0.0054	0.3941	0.0861	0.0051	0.0891	0.0875	0.0053	0.0935
TiO2	0.7390	0.0368	0.7868	1.0602	0.0342	1.0974	0.9024	0.0359	0.9646
V2O5	0.0445	0.0055	0.0474	0.0190	0.0053	0.0197	0.0289	0.0056	0.0309
Cr2O3	0.0131	0.0016	0.0139	0.0102	0.0015	0.0106	0.0111	0.0016	0.0119
MnO	0.0425	0.0025	0.0452	0.0087	0.0024	0.0090	0.0557	0.0024	0.0595
Fe2O3	5.1142	0.0319	5.4452	0.6352	0.0047	0.6575	3.2731	0.0301	3.4987
Co2O3	0.0024	0.0020	0.0026	0.0018	0.0017	0.0019	0.0018	0.0019	0.0019
NiO	0.0194	0.0015	0.0207	0.0118	0.0014	0.0122	0.0115	0.0014	0.0123
CuO	0.0152	0.0013	0.0162	0.0097	0.0012	0.0100	0.0113	0.0012	0.0121
ZnO	0.0206	0.0011	0.0219	0.0025	0.0010	0.0026	0.0032	0.0010	0.0034
Ga2O3	0.0043	0.0012	0.0046	0.0013	0.0011	0.0013	0.0029	0.0012	0.0031
As2O3	0.0025	0.0011	0.0027	0.0010	0.0010	0.0010	0.0018	0.0010	0.0019
Br	0.0000	0.0007	0.0000	0.0002	0.0007	0.0002	0.0005	0.0007	0.0005
Rb2O	0.0165	0.0008	0.0176	0.0038	0.0007	0.0039	0.0088	0.0007	0.0094
SrO	0.0161	0.0007	0.0171	0.0043	0.0006	0.0044	0.0073	0.0007	0.0078
Y2O3	0.0013	0.0008	0.0014	0.0017	0.0007	0.0018	0.0006	0.0008	0.0006
ZrO2	0.0176	0.0007	0.0187	0.0594	0.0006	0.0615	0.0325	0.0007	0.0347
Nb2O5	0.0002	0.0008	0.0002	0.0018	0.0007	0.0019	0.0010	0.0008	0.0011
MoO3	0.0003	0.0009	0.0003	0.0001	0.0008	0.0001	0.0000	0.0008	0.0000
BaO	0.0777	0.0151	0.0827	0.0178	0.0135	0.0184	0.0255	0.0145	0.0273
HfO2	0.0022	0.0041	0.0023	0.0064	0.0037	0.0066	0.0049	0.0039	0.0052
PbO	0.0003	0.0021	0.0003	0.0009	0.0019	0.0009	0.0000	0.0020	0.0000
ThO2	0.0015	0.0014	0.0016	0.0000	0.0013	0.0000	0.0007	0.0014	0.0007
Ра	0.0059	0.0011	0.0063	0.0006	0.0010	0.0006	0.0018	0.0011	0.0019
U308	0.0006	0.0002	0.0006	0.0002	0.0002	0.0002	0.0006	0.0002	0.0006
TGA	6.0790			3.3940			6.4470		
Total	100.0000			100.0000			100.0000		

	591			59J			59K			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.2944	0.0243	0.3131	0.3133	0.0251	0.3324	0.3560	0.0256	0.3783	
MgO	0.6992	0.0200	0.7436	0.6213	0.0206	0.6591	0.7092	0.0208	0.7536	
Al2O3	18.4343	0.0195	19.6052	17.6208	0.0193	18.6922	17.1385	0.0192	18.2119	
SiO2	70.6372	0.0321	75.1235	71.4739	0.0321	75.8199	71.1861	0.0321	75.6446	
P2O5	0.0360	0.0043	0.0383	0.0337	0.0043	0.0357	0.0333	0.0044	0.0354	
SO3	0.0586	0.0071	0.0623	0.0661	0.0074	0.0701	0.1107	0.0074	0.1176	
Cl	0.0030	0.0095	0.0032	0.0000	0.0097	0.0000	0.0039	0.0096	0.0041	
К2О	1.5058	0.0042	1.6014	1.8122	0.0043	1.9224	1.9998	0.0043	2.1250	
CaO	0.1398	0.0052	0.1487	0.1328	0.0054	0.1409	0.1488	0.0053	0.1581	
TiO2	0.7317	0.0378	0.7782	0.8139	0.0359	0.8634	0.8079	0.0367	0.8585	
V2O5	0.0203	0.0059	0.0216	0.0414	0.0054	0.0439	0.0331	0.0056	0.0352	
Cr2O3	0.0123	0.0016	0.0131	0.0123	0.0016	0.0130	0.0118	0.0016	0.0125	
MnO	0.0055	0.0024	0.0059	0.0078	0.0024	0.0083	0.0084	0.0024	0.0089	
Fe2O3	1.3132	0.0048	1.3966	1.1456	0.0299	1.2153	1.3645	0.0303	1.4500	
Co2O3	0.0008	0.0018	0.0008	0.0027	0.0018	0.0029	0.0046	0.0018	0.0049	
NiO	0.0101	0.0014	0.0107	0.0159	0.0014	0.0169	0.0212	0.0014	0.0225	
CuO	0.0120	0.0012	0.0128	0.0123	0.0012	0.0131	0.0139	0.0012	0.0148	
ZnO	0.0034	0.0010	0.0036	0.0168	0.0010	0.0178	0.0201	0.0010	0.0214	
Ga2O3	0.0035	0.0011	0.0037	0.0028	0.0011	0.0030	0.0040	0.0011	0.0042	
As2O3	0.0011	0.0010	0.0012	0.0000	0.0010	0.0000	0.0021	0.0010	0.0022	
Br	0.0005	0.0007	0.0005	0.0002	0.0007	0.0002	0.0006	0.0007	0.0006	
Rb2O	0.0087	0.0007	0.0093	0.0084	0.0007	0.0089	0.0095	0.0007	0.0101	
SrO	0.0099	0.0007	0.0105	0.0093	0.0007	0.0099	0.0124	0.0007	0.0132	
Y2O3	0.0011	0.0008	0.0012	0.0012	0.0008	0.0013	0.0013	0.0008	0.0014	
ZrO2	0.0315	0.0007	0.0335	0.0340	0.0007	0.0361	0.0322	0.0007	0.0342	
Nb2O5	0.0002	0.0008	0.0002	0.0007	0.0008	0.0007	0.0007	0.0008	0.0007	
MoO3	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	0.0000	0.0008	0.0000	
BaO	0.0486	0.0140	0.0517	0.0532	0.0145	0.0564	0.0644	0.0145	0.0684	
HfO2	0.0018	0.0039	0.0019	0.0074	0.0039	0.0078	0.0037	0.0039	0.0039	
PbO	0.0000	0.0020	0.0000	0.0041	0.0020	0.0044	0.0000	0.0020	0.0000	
ThO2	0.0006	0.0014	0.0006	0.0005	0.0014	0.0005	0.0002	0.0014	0.0002	
Ра	0.0029	0.0011	0.0031	0.0032	0.0011	0.0034	0.0031	0.0011	0.0033	
U308	0.0000	0.0002	0.0000	0.0001	0.0002	0.0001	0.0003	0.0002	0.0003	
TGA	5.9720			5.7320			5.8940			
Total:	100.0000			100.0000			100.0000			

		59L		60A			60B			
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	
Na2O	0.3692	0.0260	0.3929	0.0743	0.0248	0.0798	0.1341	0.0247	0.1424	
MgO	0.8425	0.0204	0.8966	0.1105	0.0202	0.1186	0.0773	0.0201	0.0821	
Al2O3	18.4417	0.0194	19.6253	16.7729	0.0190	18.0078	16.9838	0.0195	18.0356	
SiO2	69.8109	0.0321	74.2914	71.6072	0.0327	76.8796	73.1424	0.0326	77.6722	
P2O5	0.0391	0.0044	0.0416	0.0283	0.0044	0.0304	0.0392	0.0043	0.0416	
SO3	0.0939	0.0074	0.0999	0.0959	0.0073	0.1030	0.3255	0.0076	0.3457	
Cl	0.0000	0.0098	0.0000	0.0000	0.0100	0.0000	0.0073	0.0097	0.0078	
К2О	1.4832	0.0042	1.5784	1.1188	0.0041	1.2012	1.4233	0.0042	1.5114	
CaO	0.3556	0.0053	0.3784	1.4675	0.0055	1.5755	0.1255	0.0053	0.1333	
TiO2	0.8254	0.0361	0.8784	0.6785	0.0362	0.7285	0.7613	0.0358	0.8084	
V2O5	0.0324	0.0054	0.0345	0.0284	0.0055	0.0305	0.0224	0.0055	0.0238	
Cr2O3	0.0116	0.0015	0.0123	0.0102	0.0016	0.0110	0.0110	0.0016	0.0117	
MnO	0.0189	0.0024	0.0201	0.0075	0.0024	0.0081	0.0080	0.0024	0.0085	
Fe2O3	1.4956	0.0048	1.5916	1.0326	0.0049	1.1086	0.9866	0.0050	1.0477	
Co2O3	0.0010	0.0018	0.0011	0.0000	0.0018	0.0000	0.0000	0.0018	0.0000	
NiO	0.0119	0.0014	0.0127	0.0115	0.0014	0.0123	0.0121	0.0014	0.0128	
CuO	0.0117	0.0012	0.0125	0.0102	0.0012	0.0110	0.0100	0.0012	0.0106	
ZnO	0.0043	0.0010	0.0046	0.0022	0.0010	0.0024	0.0042	0.0010	0.0045	
Ga2O3	0.0030	0.0011	0.0032	0.0027	0.0012	0.0029	0.0022	0.0011	0.0023	
As2O3	0.0009	0.0010	0.0010	0.0024	0.0010	0.0026	0.0012	0.0010	0.0013	
Br	0.0006	0.0007	0.0006	0.0008	0.0007	0.0009	0.0012	0.0007	0.0013	
Rb2O	0.0085	0.0007	0.0090	0.0042	0.0007	0.0045	0.0066	0.0007	0.0070	
SrO	0.0091	0.0007	0.0097	0.0120	0.0007	0.0129	0.0063	0.0007	0.0067	
Y2O3	0.0010	0.0008	0.0011	0.0008	0.0008	0.0009	0.0017	0.0008	0.0018	
ZrO2	0.0320	0.0007	0.0341	0.0326	0.0007	0.0350	0.0304	0.0007	0.0323	
Nb2O5	0.0009	0.0008	0.0010	0.0003	0.0008	0.0003	0.0009	0.0008	0.0010	
MoO3	0.0003	0.0008	0.0003	0.0000	0.0008	0.0000	0.0003	0.0008	0.0003	
BaO	0.0553	0.0141	0.0588	0.0253	0.0149	0.0272	0.0352	0.0147	0.0374	
HfO2	0.0038	0.0039	0.0040	0.0032	0.0039	0.0034	0.0053	0.0039	0.0056	
PbO	0.0017	0.0020	0.0018	0.0000	0.0020	0.0000	0.0000	0.0020	0.0000	
ThO2	0.0009	0.0014	0.0010	0.0000	0.0014	0.0000	0.0006	0.0014	0.0006	
Ра	0.0020	0.0011	0.0021	0.0010	0.0011	0.0011	0.0018	0.0011	0.0019	
U308	0.0000	0.0002	0.0000	0.0000	0.0002	0.0000	0.0004	0.0002	0.0004	
TGA:	6.0310			6.8580			5.8320			
Total:	100.0000			100.0000			100.0000			

		61A			61B		61C		
	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %	Mass %	Det. Lim.	Mass %
Na2O	0.1603	0.0238	0.1681	0.2964	0.0332	0.3925	0.2391	0.0247	0.2527
MgO	0.5459	0.0191	0.5726	0.9578	0.0253	1.2683	0.4395	0.0197	0.4645
Al2O3	14.6307	0.0173	15.3471	17.1915	0.0240	22.7642	14.7433	0.0180	15.5834
SiO2	75.0928	0.0323	78.7698	50.3217	0.0352	66.6336	71.2201	0.0321	75.2783
P2O5	0.0304	0.0041	0.0319	0.0406	0.0055	0.0538	0.0578	0.0042	0.0611
SO3	0.0602	0.0070	0.0631	0.2138	0.0096	0.2831	0.0619	0.0071	0.0654
Cl	0.0010	0.0092	0.0010	0.0013	0.0127	0.0017	0.0000	0.0095	0.0000
К2О	2.0235	0.0042	2.1226	2.2158	0.0055	2.9340	1.3270	0.0040	1.4026
CaO	0.1385	0.0050	0.1453	0.9568	0.0072	1.2669	0.0440	0.0052	0.0465
TiO2	0.5089	0.0352	0.5338	0.5387	0.0477	0.7133	0.8177	0.0365	0.8643
V2O5	0.0159	0.0053	0.0167	0.0242	0.0072	0.0321	0.0126	0.0057	0.0133
Cr2O3	0.0102	0.0015	0.0107	0.0100	0.0020	0.0132	0.0163	0.0015	0.0172
MnO	0.0166	0.0023	0.0174	0.0179	0.0032	0.0237	0.1117	0.0024	0.1181
Fe2O3	1.9155	0.0294	2.0093	2.5133	0.0400	3.3280	5.3337	0.0052	5.6376
Co2O3	0.0010	0.0018	0.0011	0.0063	0.0024	0.0084	0.0073	0.0018	0.0077
NiO	0.0138	0.0013	0.0145	0.0319	0.0019	0.0423	0.0142	0.0014	0.0150
CuO	0.0097	0.0012	0.0102	0.0132	0.0016	0.0175	0.0117	0.0012	0.0124
ZnO	0.0111	0.0010	0.0116	0.0247	0.0014	0.0327	0.0081	0.0010	0.0086
Ga2O3	0.0024	0.0011	0.0025	0.0027	0.0016	0.0036	0.0025	0.0012	0.0026
As2O3	0.0000	0.0010	0.0000	0.0054	0.0014	0.0072	0.0013	0.0010	0.0014
Br	0.0010	0.0007	0.0010	0.0008	0.0009	0.0011	0.0000	0.0007	0.0000
Rb2O	0.0106	0.0007	0.0111	0.0137	0.0010	0.0182	0.0073	0.0007	0.0077
SrO	0.0097	0.0006	0.0102	0.0244	0.0009	0.0323	0.0065	0.0007	0.0069
Y2O3	0.0001	0.0007	0.0001	0.0103	0.0010	0.0137	0.0018	0.0008	0.0019
ZrO2	0.0184	0.0006	0.0193	0.0175	0.0009	0.0232	0.0553	0.0007	0.0585
Nb2O5	0.0000	0.0007	0.0000	0.0002	0.0010	0.0003	0.0000	0.0008	0.0000
MoO3	0.0004	0.0008	0.0004	0.0000	0.0011	0.0000	0.0003	0.0008	0.0003
BaO	0.0930	0.0138	0.0976	0.0608	0.0188	0.0805	0.0592	0.0136	0.0626
HfO2	0.0043	0.0037	0.0045	0.0021	0.0052	0.0028	0.0061	0.0039	0.0064
PbO	0.0029	0.0019	0.0030	0.0000	0.0027	0.0000	0.0010	0.0020	0.0011
ThO2	0.0000	0.0013	0.0000	0.0014	0.0019	0.0018	0.0002	0.0014	0.0002
Ра	0.0033	0.0010	0.0035	0.0045	0.0015	0.0060	0.0016	0.0011	0.0017
U308	0.0000	0.0002	0.0000	0.0000	0.0003	0.0000	0.0000	0.0002	0.0000
TGA:	4.6680			24.4800			5.3910		
Total:	100.0000			100.0000			100.0000		

		61D	
	Mass %	Det. Lim.	Mass %
Na2O	1.9948	0.0272	2.1455
MgO	0.4642	0.0192	0.4993
Al2O3	14.7423	0.0181	15.8562
SiO2	67.1285	0.0313	72.2006
P2O5	0.0521	0.0044	0.0560
SO3	1.6657	0.0077	1.7916
Cl	0.0112	0.0095	0.0120
К2О	1.4106	0.0041	1.5172
CaO	0.0912	0.0052	0.0981
TiO2	0.7512	0.0350	0.8080
V205	0.0251	0.0053	0.0270
Cr2O3	0.0137	0.0015	0.0147
MnO	0.0875	0.0024	0.0941
Fe2O3	4.3856	0.0052	4.7170
Co2O3	0.0025	0.0019	0.0027
NiO	0.0135	0.0014	0.0145
CuO	0.0110	0.0012	0.0118
ZnO	0.0078	0.0010	0.0084
Ga2O3	0.0027	0.0012	0.0029
As2O3	0.0000	0.0010	0.0000
Br	0.0002	0.0007	0.0002
Rb2O	0.0078	0.0007	0.0084
SrO	0.0063	0.0007	0.0068
Y2O3	0.0018	0.0008	0.0019
ZrO2	0.0385	0.0007	0.0414
Nb2O5	0.0007	0.0008	0.0008
MoO3	0.0000	0.0008	0.0000
BaO	0.0499	0.0142	0.0537
HfO2	0.0021	0.0039	0.0023
PbO	0.0027	0.0020	0.0029
ThO2	0.0006	0.0014	0.0006
Ра	0.0026	0.0011	0.0028
U3O8	0.0006	0.0002	0.0006
TGA:	7.0250		
Total:	100.0000		

Appendix C Chemistry by Unit

BEAR DEN MEMBER

IVIEIVIDEN	3a	3b	4a	4b	4c	5a	6a	6b	6c
	Mass %								
Na2O	0.1442	0.1159	0.0833	0.0984	0.0629	0.1320	0.1291	0.1183	0.0756
MgO	0.8201	0.7444	0.2228	0.1682	0.1883	0.3152	0.4829	0.0916	0.0416
Al2O3	21.1642	21.6604	14.9317	13.5440	13.7809	17.4332	20.7566	22.0923	14.8707
SiO2	72.0912	72.3447	80.1182	80.9939	81.0958	77.3512	74.4983	73.4658	81.5368
P2O5	0.0384	0.0405	0.0287	0.0330	0.0276	0.0335	0.0340	0.0313	0.0278
SO3	0.0781	0.0766	0.0433	0.1321	0.1822	0.2358	0.1299	0.1567	0.1447
Cl	0.0055	0.0000	0.0020	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
К2О	2.0916	2.1045	1.2613	1.2970	1.1219	1.7714	1.7983	1.6118	0.9531
CaO	0.1880	0.1652	0.0939	0.0311	0.0503	0.1478	0.0644	0.0701	0.0609
TiO2	0.8600	0.7992	0.7382	0.6003	0.5480	0.9923	0.8859	0.8369	1.1945
V2O5	0.0330	0.0334	0.0190	0.0191	0.0241	0.0424	0.0323	0.0284	0.0277
Cr2O3	0.0125	0.0102	0.0096	0.0101	0.0092	0.0136	0.0112	0.0111	0.0096
MnO	0.0218	0.0067	0.0157	0.0186	0.0084	0.0153	0.0050	0.0051	0.0022
Fe2O3	2.2996	1.7527	2.3317	2.9283	2.7922	1.3479	1.0259	1.3467	0.9364
Co2O3	0.0013	0.0011	0.0014	0.0022	0.0008	0.0015	0.0014	0.0004	0.0018
NiO	0.0133	0.0148	0.0136	0.0132	0.0124	0.0133	0.0121	0.0112	0.0113
CuO	0.0109	0.0115	0.0095	0.0114	0.0113	0.0102	0.0105	0.0095	0.0102
ZnO	0.0043	0.0050	0.0063	0.0059	0.0041	0.0061	0.0052	0.0033	0.0024
Ga2O3	0.0032	0.0039	0.0025	0.0016	0.0013	0.0007	0.0033	0.0036	0.0027
As2O3	0.0000	0.0023	0.0004	0.0000	0.0000	0.0080	0.0002	0.0038	0.0000
Br	0.0004	0.0007	0.0000	0.0006	0.0000	0.0000	0.0005	0.0007	0.0008
Rb2O	0.0123	0.0116	0.0061	0.0067	0.0060	0.0070	0.0103	0.0080	0.0062
SrO	0.0073	0.0094	0.0053	0.0047	0.0038	0.0086	0.0072	0.0079	0.0046
Y2O3	0.0026	0.0009	0.0010	0.0012	0.0000	0.0021	0.0016	0.0015	0.0013
ZrO2	0.0278	0.0268	0.0161	0.0189	0.0241	0.0434	0.0335	0.0296	0.0295
Nb2O5	0.0019	0.0013	0.0001	0.0001	0.0000	0.0000	0.0017	0.0011	0.0028
MoO3	0.0000	0.0001	0.0000	0.0007	0.0000	0.0000	0.0003	0.0000	0.0000
BaO	0.0539	0.0455	0.0312	0.0487	0.0359	0.0607	0.0490	0.0458	0.0337
HfO2	0.0035	0.0046	0.0042	0.0053	0.0040	0.0038	0.0049	0.0043	0.0032
PbO	0.0040	0.0020	0.0007	0.0024	0.0025	0.0000	0.0009	0.0000	0.0059
ThO2	0.0011	0.0000	0.0008	0.0000	0.0006	0.0001	0.0000	0.0007	0.0007
Ра	0.0040	0.0037	0.0014	0.0019	0.0012	0.0029	0.0035	0.0025	0.0011
U3O8	0.0000	0.0004	0.0000	0.0004	0.0002	0.0000	0.0001	0.0000	0.0002

BEAR DEN MEMBER									
MEMBER	6d	6e	6f	6g	6h	7a	7b	7c	15a
	Mass %								
Na2O	0.0884	0.0882	0.1282	0.0588	0.0709	0.1694	0.1752	0.3576	0.2528
MgO	0.4232	0.0782	0.6428	0.0482	0.0366	0.0725	0.5332	0.7842	0.6533
Al2O3	20.9377	19.7832	23.2053	16.7434	18.2685	22.8473	21.7821	23.5319	18.5323
SiO2	74.5661	76.3234	71.2140	79.5778	78.9558	73.5905	72.8824	68.7506	72.0127
P2O5	0.0295	0.0325	0.0425	0.0296	0.0293	0.0266	0.0432	0.0338	0.0298
SO3	0.2094	0.0775	0.1168	0.6912	0.1345	0.1604	0.1641	0.2557	0.2039
Cl	0.0000	0.0000	0.0000	0.0000	0.0036	0.0042	0.0012	0.0000	0.0000
K2O	1.5616	1.5986	2.1601	0.9624	0.9634	0.2304	1.4555	2.3656	0.8938
CaO	0.0809	0.0613	0.1202	0.2339	0.0679	0.2489	0.0300	0.0392	0.3107
TiO2	0.7595	0.8795	0.9309	0.9280	0.7831	1.2427	0.8596	0.9728	0.7891
V2O5	0.0130	0.0296	0.0415	0.0337	0.0248	0.0217	0.0336	0.0556	0.0368
Cr2O3	0.0117	0.0106	0.0113	0.0118	0.0100	0.0096	0.0132	0.0118	0.0105
MnO	0.0031	0.0045	0.0057	0.0068	0.0055	0.0052	0.0071	0.0068	0.0296
Fe2O3	1.1797	0.8913	1.2180	0.5009	0.5225	1.2446	1.8877	2.6610	6.1236
Co2O3	0.0015	0.0013	0.0011	0.0011	0.0002	0.0000	0.0000	0.0001	0.0002
NiO	0.0127	0.0122	0.0129	0.0136	0.0126	0.0136	0.0126	0.0120	0.0127
CuO	0.0115	0.0118	0.0128	0.0123	0.0124	0.0115	0.0112	0.0114	0.0128
ZnO	0.0038	0.0038	0.0058	0.0058	0.0031	0.0037	0.0026	0.0024	0.0031
Ga2O3	0.0028	0.0035	0.0056	0.0020	0.0020	0.0058	0.0049	0.0044	0.0034
As2O3	0.0016	0.0009	0.0006	0.0000	0.0000	0.0000	0.0007	0.0116	0.0000
Br	0.0000	0.0001	0.0002	0.0002	0.0003	0.0009	0.0003	0.0003	0.0003
Rb2O	0.0082	0.0094	0.0120	0.0050	0.0050	0.0009	0.0087	0.0145	0.0074
SrO	0.0067	0.0067	0.0099	0.0085	0.0036	0.0041	0.0084	0.0089	0.0073
Y2O3	0.0010	0.0010	0.0010	0.0019	0.0009	0.0023	0.0008	0.0007	0.0017
ZrO2	0.0319	0.0406	0.0254	0.0703	0.0494	0.0604	0.0342	0.0219	0.0351
Nb2O5	0.0019	0.0013	0.0014	0.0007	0.0014	0.0028	0.0012	0.0018	0.0011
MoO3	0.0001	0.0007	0.0000	0.0008	0.0002	0.0000	0.0000	0.0000	0.0006
BaO	0.0422	0.0412	0.0655	0.0397	0.0068	0.0096	0.0362	0.0660	0.0253
HfO2	0.0052	0.0042	0.0024	0.0076	0.0093	0.0064	0.0062	0.0049	0.0041
PbO	0.0017	0.0000	0.0008	0.0027	0.0012	0.0027	0.0004	0.0069	0.0028
ThO2	0.0000	0.0004	0.0000	0.0008	0.0004	0.0009	0.0010	0.0001	0.0006
Ра	0.0031	0.0025	0.0048	0.0005	0.0019	0.0004	0.0022	0.0050	0.0020
U3O8	0.0002	0.0000	0.0005	0.0000	0.0000	0.0001	0.0003	0.0005	0.0006

MEMBER			. – .		. – •				
	15b	15c	15d	15e	15f	15g	15h	15i	15j
	Mass %								
Na2O	0.2691	0.2189	0.3415	0.1696	0.2336	0.2753	0.3504	0.3237	0.3565
MgO	0.6896	0.6953	1.2145	0.0336	0.0618	0.4909	0.1140	0.7286	0.8142
Al2O3	19.7285	16.8642	21.0436	7.2929	14.2468	19.2785	20.3242	23.1518	23.8707
SiO2	71.4720	69.8514	66.4713	90.3478	82.0137	73.1829	73.0060	67.9109	64.6174
P2O5	0.0257	0.0351	0.0469	0.0222	0.0251	0.0245	0.0312	0.0337	0.0348
SO3	0.6544	0.7144	0.2782	0.1447	0.2524	0.4876	0.2352	0.1684	0.2393
Cl	0.0034	0.0039	0.0007	0.0000	0.0000	0.0017	0.0045	0.0000	0.0038
K2O	1.2281	1.2625	2.9774	0.1412	0.2614	0.6859	1.2831	1.6420	1.7365
CaO	0.2587	0.2344	0.1313	0.0275	0.0549	0.0787	0.0555	0.0754	0.0895
TiO2	0.6837	0.6200	0.7436	0.9783	1.0706	0.9555	0.9371	0.8740	0.9354
V2O5	0.0302	0.0315	0.0417	0.0174	0.0281	0.0321	0.0302	0.0225	0.0441
Cr2O3	0.0115	0.0106	0.0130	0.0060	0.0086	0.0112	0.0123	0.0140	0.0143
MnO	0.0117	0.0385	0.0148	0.0028	0.0037	0.0081	0.0131	0.0139	0.0195
Fe2O3	4.7526	9.2917	6.5066	0.6889	1.6257	4.3766	3.4723	4.8871	7.0896
Co2O3	0.0041	0.0008	0.0008	0.0017	0.0019	0.0000	0.0014	0.0047	0.0000
NiO	0.0139	0.0135	0.0120	0.0122	0.0107	0.0122	0.0110	0.0124	0.0128
CuO	0.0117	0.0126	0.0138	0.0108	0.0125	0.0122	0.0108	0.0121	0.0128
ZnO	0.0041	0.0046	0.0043	0.0024	0.0029	0.0027	0.0033	0.0025	0.0039
Ga2O3	0.0032	0.0021	0.0039	0.0016	0.0031	0.0041	0.0048	0.0048	0.0043
As2O3	0.0000	0.0022	0.0000	0.0012	0.0000	0.0018	0.0000	0.0000	0.0000
Br	0.0002	0.0006	0.0003	0.0003	0.0000	0.0000	0.0006	0.0001	0.0003
Rb2O	0.0092	0.0093	0.0193	0.0006	0.0019	0.0051	0.0091	0.0103	0.0111
SrO	0.0237	0.0077	0.0134	0.0026	0.0071	0.0070	0.0062	0.0108	0.0125
Y2O3	0.0017	0.0005	0.0005	0.0040	0.0030	0.0009	0.0010	0.0018	0.0011
ZrO2	0.0294	0.0369	0.0191	0.0650	0.0479	0.0363	0.0331	0.0273	0.0252
Nb2O5	0.0002	0.0002	0.0015	0.0018	0.0019	0.0017	0.0017	0.0023	0.0017
MoO3	0.0002	0.0003	0.0002	0.0003	0.0002	0.0000	0.0002	0.0000	0.0001
BaO	0.0629	0.0296	0.0738	0.0155	0.0123	0.0191	0.0358	0.0507	0.0369
HfO2	0.0048	0.0027	0.0019	0.0067	0.0047	0.0051	0.0060	0.0079	0.0042
PbO	0.0069	0.0000	0.0034	0.0001	0.0026	0.0005	0.0029	0.0017	0.0034
ThO2	0.0006	0.0000	0.0004	0.0000	0.0000	0.0005	0.0003	0.0010	0.0008
Ра	0.0036	0.0035	0.0064	0.0000	0.0009	0.0012	0.0026	0.0032	0.0033
U3O8	0.0004	0.0005	0.0000	0.0003	0.0000	0.0001	0.0000	0.0004	0.0000

BEAR DEN

BEAR DEN									
MEMBER	15k	17A	17B	18A	18B	18C	18D	18E	19A
	Mass %								
Na2O	0.2638	0.1106	0.1631	0.1378	0.1553	0.1577	0.2183	0.2741	0.2369
MgO	0.1577	0.5327	0.6412	0.7776	0.7756	0.5426	0.6522	0.4386	0.7219
Al2O3	19.9617	17.3303	18.3927	27.3869	23.9805	20.3756	25.2385	18.6541	18.6075
SiO2	55.0807	78.4701	74.9376	66.4902	69.8505	74.2319	69.0085	74.1954	75.5388
P2O5	0.1551	0.0344	0.0450	0.0417	0.0529	0.0331	0.0333	0.0310	0.0322
SO3	0.2063	0.1640	0.2601	0.1048	0.0718	0.0672	0.0900	0.1741	0.2734
Cl	0.0000	0.0067	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0057
К2О	1.8408	1.4673	1.6793	1.9706	1.9743	1.7510	0.9397	1.2290	1.3684
CaO	0.3852	0.0838	0.0625	0.0753	0.0905	0.1178	0.2713	0.0892	0.0810
TiO2	0.8401	0.7769	0.8368	1.0966	1.1322	1.1676	1.2585	0.9614	0.9454
V2O5	0.0524	0.0307	0.0353	0.0414	0.0412	0.0309	0.0398	0.0299	0.0298
Cr2O3	0.0130	0.0105	0.0117	0.0124	0.0123	0.0108	0.0124	0.0103	0.0096
MnO	0.0833	0.0027	0.0125	0.0048	0.0064	0.0064	0.0052	0.0200	0.0056
Fe2O3	20.7317	0.8280	2.7676	1.7284	1.6663	1.3666	2.1031	3.7592	1.9796
Co2O3	0.0000	0.0010	0.0000	0.0010	0.0016	0.0009	0.0012	0.0011	0.0000
NiO	0.0136	0.0128	0.0153	0.0145	0.0179	0.0132	0.0141	0.0146	0.0122
CuO	0.0126	0.0123	0.0140	0.0138	0.0141	0.0115	0.0160	0.0106	0.0110
ZnO	0.0045	0.0022	0.0034	0.0068	0.0206	0.0063	0.0061	0.0045	0.0034
Ga2O3	0.0036	0.0028	0.0028	0.0054	0.0058	0.0037	0.0072	0.0040	0.0040
As2O3	0.0070	0.0000	0.0000	0.0019	0.0000	0.0000	0.0026	0.0008	0.0000
Br	0.0002	0.0005	0.0008	0.0004	0.0003	0.0003	0.0003	0.0003	0.0009
Rb2O	0.0122	0.0082	0.0096	0.0118	0.0128	0.0107	0.0093	0.0100	0.0131
SrO	0.0242	0.0082	0.0070	0.0075	0.0078	0.0080	0.0116	0.0071	0.0074
Y2O3	0.0025	0.0029	0.0051	0.0015	0.0065	0.0023	0.0000	0.0013	0.0012
ZrO2	0.0199	0.0415	0.0429	0.0250	0.0285	0.0330	0.0273	0.0366	0.0380
Nb2O5	0.0013	0.0012	0.0012	0.0010	0.0010	0.0024	0.0023	0.0015	0.0023
MoO3	0.0002	0.0005	0.0001	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000
BaO	0.0973	0.0429	0.0411	0.0342	0.0578	0.0355	0.0189	0.0334	0.0559
HfO2	0.0046	0.0080	0.0040	0.0028	0.0073	0.0063	0.0079	0.0043	0.0059
PbO	0.0000	0.0031	0.0032	0.0000	0.0040	0.0035	0.0000	0.0007	0.0062
ThO2	0.0011	0.0009	0.0007	0.0000	0.0003	0.0000	0.0001	0.0004	0.0001
Ра	0.0041	0.0022	0.0031	0.0038	0.0037	0.0030	0.0035	0.0025	0.0026
U3O8	0.0000	0.0001	0.0003	0.0001	0.0001	0.0002	0.0008	0.0000	0.0000

BEAR DEN									
IVIEIVIDEK	A9B	A9C	19D	19E	19F	20A	20B	20C	21A
	Mass %								
Na2O	0.2223	0.4354	0.2940	0.2059	0.4736	0.0690	0.0919	0.0952	0.3896
MgO	0.7167	0.1081	0.6277	0.5573	0.6882	0.0979	0.3483	0.0531	1.4821
Al2O3	23.2808	19.7198	27.6969	26.2323	32.1276	13.7864	17.9053	17.5458	18.9029
SiO2	65.8889	74.9689	64.2609	67.9271	61.5271	75.8566	74.4843	79.7157	68.1048
P2O5	0.0354	0.0338	0.0378	0.0349	0.0405	0.0270	0.0295	0.0255	0.0759
SO3	0.1873	0.5419	0.1262	0.2094	0.3698	4.2071	2.2025	0.1168	1.6714
Cl	0.0000	0.0003	0.0000	0.0000	0.0050	0.0028	0.0000	0.0000	0.0011
К2О	1.6590	1.5791	0.9047	1.3106	0.7336	0.4194	0.7960	0.8343	3.4820
CaO	0.0596	0.0686	0.1997	0.0643	0.1095	3.3113	1.5739	0.0790	0.4434
TiO2	1.0876	1.1625	1.1116	1.0714	1.1339	1.1725	0.9732	0.7421	0.7228
V2O5	0.0380	0.0338	0.0386	0.0321	0.0366	0.0203	0.0260	0.0271	0.0213
Cr2O3	0.0122	0.0122	0.0123	0.0118	0.0135	0.0090	0.0105	0.0092	0.0117
MnO	0.0264	0.0052	0.0263	0.0048	0.0052	0.0034	0.0390	0.0044	0.0130
Fe2O3	6.6282	1.1803	4.5253	2.2027	2.6149	0.8940	1.3477	0.6415	4.4817
Co2O3	0.0067	0.0006	0.0035	0.0015	0.0036	0.0006	0.0041	0.0025	0.0021
NiO	0.0132	0.0125	0.0136	0.0143	0.0170	0.0119	0.0238	0.0135	0.0123
CuO	0.0131	0.0116	0.0158	0.0101	0.0136	0.0104	0.0099	0.0099	0.0122
ZnO	0.0030	0.0030	0.0059	0.0044	0.0184	0.0025	0.0075	0.0031	0.0082
Ga2O3	0.0035	0.0037	0.0063	0.0060	0.0087	0.0024	0.0025	0.0031	0.0046
As2O3	0.0022	0.0003	0.0002	0.0018	0.0031	0.0000	0.0000	0.0005	0.0004
Br	0.0003	0.0007	0.0008	0.0001	0.0006	0.0006	0.0000	0.0000	0.0003
Rb2O	0.0107	0.0107	0.0070	0.0117	0.0067	0.0023	0.0041	0.0047	0.0187
SrO	0.0074	0.0084	0.0108	0.0080	0.0078	0.0108	0.0033	0.0030	0.0156
Y2O3	0.0004	0.0027	0.0019	0.0008	0.0011	0.0015	0.0046	0.0007	0.0002
ZrO2	0.0289	0.0369	0.0225	0.0242	0.0189	0.0519	0.0726	0.0275	0.0212
Nb2O5	0.0023	0.0010	0.0027	0.0015	0.0015	0.0029	0.0006	0.0009	0.0006
MoO3	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0006
BaO	0.0530	0.0464	0.0194	0.0414	0.0127	0.0134	0.0295	0.0374	0.0853
HfO2	0.0067	0.0055	0.0065	0.0050	0.0052	0.0083	0.0059	0.0015	0.0031
PbO	0.0000	0.0026	0.0153	0.0000	0.0000	0.0027	0.0024	0.0003	0.0044
ThO2	0.0011	0.0000	0.0031	0.0000	0.0000	0.0006	0.0011	0.0006	0.0002
Ра	0.0045	0.0030	0.0001	0.0042	0.0020	0.0005	0.0000	0.0006	0.0062
U3O8	0.0005	0.0004	0.0026	0.0004	0.0001	0.0000	0.0000	0.0005	0.0001

BEAR DEN									
IVIEIVIBER	21B	21C	21D	21E	21F	22A	22B	22C	22D
	Mass %								
Na2O	0.0940	0.0629	0.1536	0.1386	0.1631	0.3026	0.2335	0.2589	0.3868
MgO	0.3337	0.3321	1.1386	0.8810	1.0888	0.1284	0.5953	0.1043	0.1095
Al2O3	10.0455	12.4809	23.5879	20.1506	20.1470	23.0660	18.8258	20.7686	28.9471
SiO2	85.4185	81.8599	63.2471	73.6823	71.8157	71.3869	75.5486	71.8753	66.1773
P2O5	0.0282	0.0232	0.0381	0.0345	0.0598	0.0369	0.0356	0.0528	0.0384
SO3	0.5766	0.5337	0.8073	0.2161	0.1832	0.2261	0.1090	0.0813	0.0864
Cl	0.0009	0.0000	0.0000	0.0025	0.0067	0.0045	0.0021	0.0000	0.0000
К2О	0.4846	0.3656	2.0819	1.9639	2.9601	1.8964	1.7692	1.3820	0.7486
CaO	0.0610	0.1072	0.1897	0.0569	0.1018	0.0776	0.0691	0.1405	0.1004
TiO2	0.8065	0.8343	0.7611	0.6451	0.8647	1.0043	0.9548	1.2214	1.0640
V2O5	0.0185	0.0233	0.0389	0.0149	0.0354	0.0318	0.0266	0.0326	0.0349
Cr2O3	0.0080	0.0073	0.0125	0.0123	0.0118	0.0110	0.0115	0.0098	0.0108
MnO	0.0055	0.0051	0.0189	0.0090	0.0101	0.0038	0.0041	0.0523	0.0062
Fe2O3	1.9952	3.2590	7.7741	2.0568	2.3769	1.6720	1.6718	3.8667	2.1626
Co2O3	0.0004	0.0026	0.0019	0.0000	0.0000	0.0019	0.0010	0.0048	0.0008
NiO	0.0129	0.0109	0.0145	0.0129	0.0129	0.0120	0.0130	0.0146	0.0153
CuO	0.0129	0.0091	0.0135	0.0108	0.0112	0.0119	0.0106	0.0126	0.0137
ZnO	0.0037	0.0047	0.0126	0.0035	0.0107	0.0043	0.0056	0.0091	0.0073
Ga2O3	0.0027	0.0023	0.0051	0.0034	0.0034	0.0042	0.0002	0.0040	0.0058
As2O3	0.0008	0.0000	0.0000	0.0017	0.0000	0.0000	0.0000	0.0008	0.0000
Br	0.0006	0.0000	0.0003	0.0004	0.0000	0.0006	0.0000	0.0002	0.0006
Rb2O	0.0035	0.0021	0.0135	0.0123	0.0178	0.0118	0.0111	0.0103	0.0057
SrO	0.0041	0.0024	0.0077	0.0078	0.0113	0.0079	0.0094	0.0087	0.0071
Y2O3	0.0041	0.0024	0.0010	0.0013	0.0009	0.0011	0.0013	0.0019	0.0017
ZrO2	0.0545	0.0479	0.0227	0.0352	0.0270	0.0263	0.0346	0.0323	0.0274
Nb2O5	0.0009	0.0015	0.0008	0.0008	0.0020	0.0013	0.0017	0.0021	0.0018
MoO3	0.0000	0.0003	0.0000	0.0000	0.0000	0.0001	0.0006	0.0002	0.0004
BaO	0.0102	0.0134	0.0417	0.0354	0.0601	0.0556	0.0400	0.0421	0.0296
HfO2	0.0094	0.0053	0.0039	0.0059	0.0034	0.0046	0.0049	0.0062	0.0028
PbO	0.0003	0.0000	0.0067	0.0000	0.0057	0.0022	0.0044	0.0006	0.0054
ThO2	0.0006	0.0003	0.0000	0.0004	0.0017	0.0010	0.0014	0.0000	0.0005
Ра	0.0013	0.0004	0.0043	0.0033	0.0062	0.0043	0.0032	0.0027	0.0010
U3O8	0.0005	0.0000	0.0000	0.0004	0.0006	0.0006	0.0000	0.0002	0.0001

BEAR DEN									
MEMBER	22E	22F	23A	23B	23C	23D	23E	23F	23G
	Mass %								
Na2O	0.4528	0.3672	0.4103	0.2273	0.1442	0.2143	0.2160	0.1804	0.3143
MgO	0.1014	0.7165	2.1156	0.5149	0.0457	1.0048	0.5477	0.0684	1.1872
Al2O3	23.0859	33.7991	23.7528	16.9888	11.0135	21.3285	26.0630	20.4461	24.8336
SiO2	71.9935	59.8262	64.3348	79.0415	84.8694	53.6253	68.4954	75.7780	65.9345
P2O5	0.0354	0.0433	0.0480	0.0359	0.0240	0.0730	0.0375	0.0271	0.0632
SO3	0.3367	0.0845	1.3141	0.2392	0.4773	0.2459	0.1459	0.1372	0.1207
Cl	0.0000	0.0000	0.0012	0.0000	0.0000	0.0000	0.0039	0.0000	0.0010
К2О	0.8291	0.8186	2.7184	0.2143	0.1733	1.6560	1.2028	1.0152	3.7784
CaO	0.1035	0.2832	0.8348	0.1080	0.3054	0.2000	0.0606	0.0422	0.1920
TiO2	1.0038	1.2013	0.8298	1.1829	1.3238	0.9317	0.8996	0.7082	0.9383
V2O5	0.0319	0.0436	0.0405	0.0398	0.0255	0.0527	0.0287	0.0279	0.0514
Cr2O3	0.0109	0.0123	0.0109	0.0084	0.0080	0.0132	0.0120	0.0095	0.0146
MnO	0.0051	0.0058	0.0162	0.0030	0.0087	0.0768	0.0033	0.0030	0.0070
Fe2O3	1.8786	2.6712	3.3916	1.2649	1.4661	20.4251	2.1470	1.4548	2.2924
Co2O3	0.0014	0.0022	0.0044	0.0011	0.0002	0.0032	0.0013	0.0012	0.0020
NiO	0.0139	0.0148	0.0155	0.0152	0.0119	0.0133	0.0134	0.0118	0.0178
CuO	0.0114	0.0150	0.0158	0.0131	0.0110	0.0136	0.0102	0.0127	0.0389
ZnO	0.0048	0.0068	0.0116	0.0031	0.0019	0.0019	0.0036	0.0041	0.0198
Ga2O3	0.0054	0.0082	0.0050	0.0047	0.0021	0.0044	0.0050	0.0034	0.0042
As2O3	0.0007	0.0000	0.0044	0.0054	0.0020	0.0000	0.0000	0.0000	0.0060
Br	0.0003	0.0004	0.0007	0.0008	0.0001	0.0004	0.0000	0.0005	0.0003
Rb2O	0.0057	0.0065	0.0174	0.0008	0.0012	0.0085	0.0077	0.0063	0.0187
SrO	0.0076	0.0119	0.0096	0.0039	0.0030	0.0106	0.0064	0.0032	0.0166
Y2O3	0.0023	0.0000	0.0009	0.0038	0.0028	0.0009	0.0006	0.0012	0.0041
ZrO2	0.0352	0.0208	0.0179	0.0558	0.0592	0.0199	0.0255	0.0261	0.0159
Nb2O5	0.0013	0.0014	0.0017	0.0013	0.0025	0.0005	0.0012	0.0005	0.0003
MoO3	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	0.0000
BaO	0.0346	0.0266	0.0663	0.0166	0.0105	0.0457	0.0497	0.0243	0.1143
HfO2	0.0050	0.0048	0.0045	0.0048	0.0058	0.0048	0.0048	0.0033	0.0048
PbO	0.0007	0.0061	0.0000	0.0000	0.0000	0.0072	0.0033	0.0012	0.0000
ThO2	0.0000	0.0010	0.0003	0.0001	0.0001	0.0000	0.0014	0.0000	0.0006
Ра	0.0009	0.0005	0.0050	0.0002	0.0007	0.0036	0.0025	0.0020	0.0071
U3O8	0.0000	0.0002	0.0000	0.0004	0.0001	0.0001	0.0000	0.0000	0.0000

BEAR DEN									
IVIEIVIDER	24A	24B	24C	24D	24E	24F	24G	24H	30A
	Mass %								
Na2O	0.2239	0.1760	0.2818	0.2035	0.2091	0.4868	0.4033	0.4137	0.3116
MgO	0.0240	0.0395	0.5072	0.4569	0.8952	0.6643	1.1600	0.1845	0.6536
Al2O3	20.4735	22.4953	20.0099	17.3215	22.5457	19.5222	19.8072	22.9405	20.8502
SiO2	75.1951	72.8321	74.6018	74.3139	65.7874	71.9807	71.4952	70.7538	70.0602
P2O5	0.0271	0.0212	0.0370	0.0422	0.0477	0.1002	0.0398	0.0347	0.0375
SO3	0.6327	0.3293	0.5531	0.7511	0.3850	0.2713	0.5644	0.8312	2.3592
Cl	0.0000	0.0000	0.0000	0.0053	0.0023	0.0000	0.0031	0.0087	0.0000
К2О	0.0739	0.1286	1.0119	1.1643	2.6779	0.6531	3.7364	2.5888	1.6435
CaO	0.1201	0.0515	0.0369	0.0443	0.0659	0.0795	0.0250	0.0310	1.4491
TiO2	1.5591	1.0571	0.8229	0.8713	0.9239	2.7478	1.0465	0.8548	0.8739
V2O5	0.0270	0.0274	0.0308	0.0388	0.0556	0.0831	0.0396	0.0327	0.0401
Cr2O3	0.0073	0.0086	0.0103	0.0123	0.0154	0.0219	0.0131	0.0121	0.0129
MnO	0.0029	0.0069	0.0251	0.0130	0.0148	0.0357	0.0192	0.0197	0.0170
Fe2O3	1.5050	2.7405	1.9291	4.6170	6.2072	3.0025	1.4317	1.1226	1.5353
Co2O3	0.0025	0.0000	0.0020	0.0007	0.0023	0.0068	0.0024	0.0024	0.0000
NiO	0.0126	0.0125	0.0139	0.0110	0.0145	0.0292	0.0162	0.0150	0.0147
CuO	0.0125	0.0103	0.0112	0.0114	0.0132	0.0519	0.0252	0.0164	0.0130
ZnO	0.0015	0.0023	0.0028	0.0027	0.0125	0.0199	0.0181	0.0128	0.0020
Ga2O3	0.0081	0.0058	0.0041	0.0033	0.0051	0.0064	0.0047	0.0033	0.0036
As2O3	0.0000	0.0024	0.0052	0.0034	0.0020	0.0000	0.0000	0.0037	0.0000
Br	0.0004	0.0006	0.0000	0.0000	0.0005	0.0000	0.0006	0.0000	0.0003
Rb2O	0.0006	0.0012	0.0068	0.0064	0.0166	0.0037	0.0217	0.0143	0.0091
SrO	0.0030	0.0022	0.0193	0.0081	0.0076	0.0210	0.0091	0.0087	0.0109
Y2O3	0.0021	0.0012	0.0013	0.0022	0.0006	0.0179	0.0012	0.0012	0.0015
ZrO2	0.0615	0.0395	0.0335	0.0457	0.0222	0.0644	0.0218	0.0205	0.0338
Nb2O5	0.0037	0.0022	0.0015	0.0016	0.0019	0.0030	0.0016	0.0007	0.0007
MoO3	0.0000	0.0000	0.0003	0.0001	0.0002	0.0000	0.0004	0.0000	0.0000
BaO	0.0067	0.0000	0.0337	0.0285	0.0555	0.1089	0.0757	0.0633	0.0521
HfO2	0.0071	0.0047	0.0054	0.0032	0.0045	0.0045	0.0046	0.0044	0.0056
PbO	0.0056	0.0000	0.0000	0.0034	0.0000	0.0092	0.0040	0.0000	0.0041
ThO2	0.0000	0.0008	0.0000	0.0000	0.0021	0.0000	0.0004	0.0000	0.0011
Ра	0.0000	0.0002	0.0007	0.0017	0.0055	0.0008	0.0078	0.0041	0.0030
U3O8	0.0005	0.0001	0.0005	0.0002	0.0000	0.0034	0.0000	0.0003	0.0003

BEAR DEN MEMBER									
MEMBER	30B	30C	30D	30E	32A	32B	32C	32D	43A
	Mass %								
Na2O	0.2527	0.1223	0.1227	0.1000	0.0628	0.0924	0.1742	0.0991	0.0633
MgO	0.7563	0.3096	0.4465	0.3373	0.3617	0.4493	0.6979	0.4241	0.0878
Al2O3	22.5818	18.6639	19.6170	16.8143	17.8735	24.6161	24.1558	19.5514	15.7286
SiO2	68.6592	77.4148	73.7193	77.2103	77.7805	70.2002	66.1857	72.5240	80.1426
P2O5	0.0419	0.0316	0.0374	0.0432	0.0294	0.0235	0.0507	0.0332	0.0355
SO3	1.1565	0.1019	0.0877	0.0721	0.0737	0.1768	0.3165	0.2529	0.0514
Cl	0.0000	0.0000	0.0000	0.0000	0.0028	0.0031	0.0000	0.0012	0.0026
K2O	2.0622	1.0726	1.5439	1.6121	0.1879	0.7305	2.3641	1.5999	0.9714
CaO	0.6765	0.2934	0.1011	0.1020	0.3071	0.0897	0.0398	0.0434	0.2827
TiO2	0.9343	0.7181	0.8456	0.7251	1.3450	0.9723	0.9713	0.8775	1.0497
V2O5	0.0475	0.0219	0.0439	0.0363	0.0228	0.0368	0.0455	0.0409	0.0310
Cr2O3	0.0138	0.0109	0.0126	0.0117	0.0090	0.0101	0.0120	0.0157	0.0103
MnO	0.0413	0.0408	0.1107	0.0553	0.0087	0.0082	0.0306	0.0281	0.0314
Fe2O3	2.6112	1.0655	3.1555	2.6889	1.8022	2.4831	4.7588	4.3572	1.3847
Co2O3	0.0013	0.0008	0.0022	0.0056	0.0012	0.0002	0.0002	0.0010	0.0049
NiO	0.0162	0.0160	0.0188	0.0185	0.0149	0.0142	0.0192	0.0166	0.0161
CuO	0.0127	0.0109	0.0143	0.0116	0.0119	0.0123	0.0124	0.0179	0.0123
ZnO	0.0030	0.0027	0.0106	0.0127	0.0074	0.0030	0.0129	0.0114	0.0055
Ga2O3	0.0017	0.0023	0.0030	0.0046	0.0052	0.0058	0.0052	0.0032	0.0043
As2O3	0.0008	0.0000	0.0025	0.0013	0.0022	0.0015	0.0000	0.0000	0.0047
Br	0.0002	0.0006	0.0007	0.0002	0.0000	0.0002	0.0000	0.0001	0.0007
Rb2O	0.0116	0.0063	0.0090	0.0083	0.0012	0.0053	0.0126	0.0079	0.0063
SrO	0.0081	0.0060	0.0065	0.0081	0.0027	0.0048	0.0107	0.0170	0.0071
Y2O3	0.0027	0.0004	0.0023	0.0019	0.0026	0.0000	0.0024	0.0019	0.0023
ZrO2	0.0295	0.0315	0.0339	0.0460	0.0593	0.0320	0.0233	0.0366	0.0321
Nb2O5	0.0013	0.0003	0.0016	0.0001	0.0055	0.0014	0.0021	0.0006	0.0026
MoO3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0004
BaO	0.0625	0.0447	0.0437	0.0659	0.0141	0.0202	0.0632	0.0287	0.0199
HfO2	0.0033	0.0035	0.0041	0.0051	0.0046	0.0040	0.0030	0.0047	0.0058
PbO	0.0043	0.0046	0.0000	0.0000	0.0000	0.0000	0.0061	0.0015	0.0000
ThO2	0.0015	0.0000	0.0005	0.0000	0.0001	0.0007	0.0015	0.0001	0.0001
Ра	0.0040	0.0015	0.0024	0.0011	0.0000	0.0023	0.0043	0.0020	0.0015
U3O8	0.0000	0.0006	0.0000	0.0004	0.0000	0.0000	0.0000	0.0002	0.0004
BEAR DEN

MEMBER	43B	43C	43D	43E	46A	46B	46C	46D	46E	Mean
	Mass %									
Na2O	0.1302	0.1783	0.1420	0.1970	0.1957	0.0407	0.0568	0.0699	0.1765	0.2021
MgO	0.8436	1.3297	1.0419	1.8993	0.9295	0.1758	0.3213	0.0808	0.9451	0.5350
AI2O3	26.0709	21.0460	20.5209	18.9572	23.8539	11.6339	21.6542	24.3102	25.5717	20.4146
SiO2	68.1252	70.7816	72.9774	71.0491	67.5707	85.1049	73.7201	68.3933	64.5647	72.5426
P2O5	0.0372	0.0434	0.0359	0.0681	0.0410	0.0192	0.0215	0.0313	0.0508	0.0385
SO3	0.0678	0.1006	0.0803	0.0908	0.2683	0.1609	0.1979	0.2965	0.3927	0.3773
Cl	0.0000	0.0222	0.0056	0.0037	0.0011	0.0000	0.0000	0.0024	0.0000	0.0016
К2О	2.1933	3.4472	2.7290	3.5355	2.7299	0.2120	0.7110	1.1432	2.4876	1.4937
CaO	0.2007	0.3811	0.1324	0.1804	0.5425	0.1177	0.1734	0.0875	0.1663	0.2121
TiO2	0.9137	0.8225	0.8194	0.7603	1.0194	0.8773	0.7552	0.8457	0.9149	0.9521
V2O5	0.0483	0.0368	0.0277	0.0401	0.0390	0.0198	0.0181	0.0440	0.0420	0.0339
Cr2O3	0.0126	0.0141	0.0106	0.0127	0.0127	0.0091	0.0117	0.0121	0.0150	0.0114
MnO	0.0054	0.0057	0.0046	0.0117	0.0111	0.0021	0.0065	0.0118	0.0203	0.0156
Fe2O3	1.2002	1.5746	1.2949	2.9620	2.5886	1.5129	2.2372	4.5494	4.4702	3.0194
Co2O3	0.0008	0.0018	0.0008	0.0000	0.0050	0.0006	0.0011	0.0015	0.0000	0.0016
NiO	0.0138	0.0174	0.0139	0.0163	0.0135	0.0133	0.0127	0.0147	0.0132	0.0141
CuO	0.0112	0.0153	0.0132	0.0155	0.0126	0.0112	0.0097	0.0124	0.0120	0.0131
ZnO	0.0041	0.0084	0.0091	0.0154	0.0107	0.0032	0.0043	0.0039	0.0052	0.0061
Ga2O3	0.0045	0.0044	0.0033	0.0033	0.0040	0.0022	0.0030	0.0046	0.0043	0.0040
As2O3	0.0037	0.0060	0.0007	0.0076	0.0020	0.0011	0.0000	0.0074	0.0136	0.0017
Br	0.0005	0.0016	0.0020	0.0003	0.0010	0.0000	0.0002	0.0005	0.0006	0.0004
Rb2O	0.0124	0.0232	0.0149	0.0187	0.0135	0.0019	0.0058	0.0065	0.0176	0.0091
SrO	0.0094	0.0137	0.0078	0.0192	0.0116	0.0031	0.0047	0.0066	0.0117	0.0085
Y2O3	0.0007	0.0044	0.0022	0.0014	0.0000	0.0023	0.0012	0.0015	0.0003	0.0019
ZrO2	0.0195	0.0211	0.0220	0.0236	0.0245	0.0549	0.0355	0.0337	0.0246	0.0339
Nb2O5	0.0011	0.0010	0.0012	0.0012	0.0023	0.0018	0.0009	0.0013	0.0014	0.0015
MoO3	0.0000	0.0000	0.0000	0.0008	0.0000	0.0002	0.0002	0.0000	0.0005	0.0001
BaO	0.0591	0.0841	0.0578	0.0833	0.0866	0.0125	0.0265	0.0197	0.0651	0.0425
HfO2	0.0062	0.0040	0.0060	0.0025	0.0041	0.0044	0.0029	0.0053	0.0054	0.0049
PbO	0.0000	0.0000	0.0029	0.0161	0.0000	0.0000	0.0038	0.0000	0.0000	0.0032
ThO2	0.0000	0.0013	0.0005	0.0008	0.0006	0.0001	0.0000	0.0000	0.0011	0.0007
Ра	0.0039	0.0085	0.0055	0.0061	0.0047	0.0000	0.0015	0.0020	0.0056	0.0026
U3O8	0.0000	0.0000	0.0003	0.0000	0.0000	0.0009	0.0011	0.0002	0.0000	0.0005

Upper BEAR DEN MEMBER	2		F.,	<u> </u>		6		7.	45.
	3a	4a	5a	6a	60	6C	6d	/a	15a
	IVIASS %								
Na2O	0.1442	0.0833	0.1320	0.1291	0.1183	0.0756	0.0884	0.1694	0.2528
MgO	0.8201	0.2228	0.3152	0.4829	0.0916	0.0416	0.4232	0.0725	0.6533
AI2O3	21.1642	14.9317	17.4332	20.7566	22.0923	14.8/0/	20.9377	22.84/3	18.5323
SiO2	72.0912	80.1182	77.3512	74.4983	73.4658	81.5368	74.5661	73.5905	72.0127
P2O5	0.0384	0.0287	0.0335	0.0340	0.0313	0.0278	0.0295	0.0266	0.0298
SO3	0.0781	0.0433	0.2358	0.1299	0.1567	0.1447	0.2094	0.1604	0.2039
Cl	0.0055	0.0020	0.0000	0.0000	0.0000	0.0000	0.0000	0.0042	0.0000
K20	2.0916	1.2613	1.7714	1.7983	1.6118	0.9531	1.5616	0.2304	0.8938
CaO	0.1880	0.0939	0.1478	0.0644	0.0701	0.0609	0.0809	0.2489	0.3107
TiO2	0.8600	0.7382	0.9923	0.8859	0.8369	1.1945	0.7595	1.2427	0.7891
V2O5	0.0330	0.0190	0.0424	0.0323	0.0284	0.0277	0.0130	0.0217	0.0368
Cr2O3	0.0125	0.0096	0.0136	0.0112	0.0111	0.0096	0.0117	0.0096	0.0105
MnO	0.0218	0.0157	0.0153	0.0050	0.0051	0.0022	0.0031	0.0052	0.0296
Fe2O3	2.2996	2.3317	1.3479	1.0259	1.3467	0.9364	1.1797	1.2446	6.1236
Co2O3	0.0013	0.0014	0.0015	0.0014	0.0004	0.0018	0.0015	0.0000	0.0002
NiO	0.0133	0.0136	0.0133	0.0121	0.0112	0.0113	0.0127	0.0136	0.0127
CuO	0.0109	0.0095	0.0102	0.0105	0.0095	0.0102	0.0115	0.0115	0.0128
ZnO	0.0043	0.0063	0.0061	0.0052	0.0033	0.0024	0.0038	0.0037	0.0031
Ga2O3	0.0032	0.0025	0.0007	0.0033	0.0036	0.0027	0.0028	0.0058	0.0034
As2O3	0.0000	0.0004	0.0080	0.0002	0.0038	0.0000	0.0016	0.0000	0.0000
Br	0.0004	0.0000	0.0000	0.0005	0.0007	0.0008	0.0000	0.0009	0.0003
Rb2O	0.0123	0.0061	0.0070	0.0103	0.0080	0.0062	0.0082	0.0009	0.0074
SrO	0.0073	0.0053	0.0086	0.0072	0.0079	0.0046	0.0067	0.0041	0.0073
Y2O3	0.0026	0.0010	0.0021	0.0016	0.0015	0.0013	0.0010	0.0023	0.0017
ZrO2	0.0278	0.0161	0.0434	0.0335	0.0296	0.0295	0.0319	0.0604	0.0351
Nb2O5	0.0019	0.0001	0.0000	0.0017	0.0011	0.0028	0.0019	0.0028	0.0011
MoO3	0.0000	0.0000	0.0000	0.0003	0.0000	0.0000	0.0001	0.0000	0.0006
BaO	0.0539	0.0312	0.0607	0.0490	0.0458	0.0337	0.0422	0.0096	0.0253
HfO2	0.0035	0.0042	0.0038	0.0049	0.0043	0.0032	0.0052	0.0064	0.0041
PbO	0.0040	0.0007	0.0000	0.0009	0.0000	0.0059	0.0017	0.0027	0.0028
ThO2	0.0011	0.0008	0.0001	0.0000	0.0007	0.0007	0.0000	0.0009	0.0006
Pa	0.0040	0.0014	0.0029	0.0035	0.0025	0.0011	0.0031	0.0004	0.0020
U3O8	0.0000	0.0000	0.0000	0.0001	0.0000	0.0002	0.0002	0.0001	0.0006

Upper BEAR DEN MEMBER									
	15b	15c	15d	17A	18A	19A	20A	22A	23A
	Mass %								
Na2O	0.2691	0.2189	0.3415	0.1106	0.1378	0.2369	0.0690	0.3026	0.4103
MgO	0.6896	0.6953	1.2145	0.5327	0.7776	0.7219	0.0979	0.1284	2.1156
Al2O3	19.7285	16.8642	21.0436	17.3303	27.3869	18.6075	13.7864	23.0660	23.7528
SiO2	71.4720	69.8514	66.4713	78.4701	66.4902	75.5388	75.8566	71.3869	64.3348
P2O5	0.0257	0.0351	0.0469	0.0344	0.0417	0.0322	0.0270	0.0369	0.0480
SO3	0.6544	0.7144	0.2782	0.1640	0.1048	0.2734	4.2071	0.2261	1.3141
Cl	0.0034	0.0039	0.0007	0.0067	0.0000	0.0057	0.0028	0.0045	0.0012
K2O	1.2281	1.2625	2.9774	1.4673	1.9706	1.3684	0.4194	1.8964	2.7184
CaO	0.2587	0.2344	0.1313	0.0838	0.0753	0.0810	3.3113	0.0776	0.8348
TiO2	0.6837	0.6200	0.7436	0.7769	1.0966	0.9454	1.1725	1.0043	0.8298
V2O5	0.0302	0.0315	0.0417	0.0307	0.0414	0.0298	0.0203	0.0318	0.0405
Cr2O3	0.0115	0.0106	0.0130	0.0105	0.0124	0.0096	0.0090	0.0110	0.0109
MnO	0.0117	0.0385	0.0148	0.0027	0.0048	0.0056	0.0034	0.0038	0.0162
Fe2O3	4.7526	9.2917	6.5066	0.8280	1.7284	1.9796	0.8940	1.6720	3.3916
Co2O3	0.0041	0.0008	0.0008	0.0010	0.0010	0.0000	0.0006	0.0019	0.0044
NiO	0.0139	0.0135	0.0120	0.0128	0.0145	0.0122	0.0119	0.0120	0.0155
CuO	0.0117	0.0126	0.0138	0.0123	0.0138	0.0110	0.0104	0.0119	0.0158
ZnO	0.0041	0.0046	0.0043	0.0022	0.0068	0.0034	0.0025	0.0043	0.0116
Ga2O3	0.0032	0.0021	0.0039	0.0028	0.0054	0.0040	0.0024	0.0042	0.0050
As2O3	0.0000	0.0022	0.0000	0.0000	0.0019	0.0000	0.0000	0.0000	0.0044
Br	0.0002	0.0006	0.0003	0.0005	0.0004	0.0009	0.0006	0.0006	0.0007
Rb2O	0.0092	0.0093	0.0193	0.0082	0.0118	0.0131	0.0023	0.0118	0.0174
SrO	0.0237	0.0077	0.0134	0.0082	0.0075	0.0074	0.0108	0.0079	0.0096
Y2O3	0.0017	0.0005	0.0005	0.0029	0.0015	0.0012	0.0015	0.0011	0.0009
ZrO2	0.0294	0.0369	0.0191	0.0415	0.0250	0.0380	0.0519	0.0263	0.0179
Nb2O5	0.0002	0.0002	0.0015	0.0012	0.0010	0.0023	0.0029	0.0013	0.0017
MoO3	0.0002	0.0003	0.0002	0.0005	0.0000	0.0000	0.0000	0.0001	0.0000
BaO	0.0629	0.0296	0.0738	0.0429	0.0342	0.0559	0.0134	0.0556	0.0663
HfO2	0.0048	0.0027	0.0019	0.0080	0.0028	0.0059	0.0083	0.0046	0.0045
PbO	0.0069	0.0000	0.0034	0.0031	0.0000	0.0062	0.0027	0.0022	0.0000
ThO2	0.0006	0.0000	0.0004	0.0009	0.0000	0.0001	0.0006	0.0010	0.0003
Ра	0.0036	0.0035	0.0064	0.0022	0.0038	0.0026	0.0005	0.0043	0.0050
U3O8	0.0004	0.0005	0.0000	0.0001	0.0001	0.0000	0.0000	0.0006	0.0000

Upper BEAR DEN MEMBER									
	23B	23C	24A	24B	24C	43A	43B	46A	Mean
	Mass %								
Na2O	0.2273	0.1442	0.2239	0.1760	0.2818	0.0633	0.1302	0.1957	0.1820
MgO	0.5149	0.0457	0.0240	0.0395	0.5072	0.0878	0.8436	0.9295	0.5034
Al2O3	16.9888	11.0135	20.4735	22.4953	20.0099	15.7286	26.0709	23.8539	19.6833
SiO2	79.0415	84.8694	75.1951	72.8321	74.6018	80.1426	68.1252	67.5707	73.9031
P2O5	0.0359	0.0240	0.0271	0.0212	0.0370	0.0355	0.0372	0.0410	0.0333
SO3	0.2392	0.4773	0.6327	0.3293	0.5531	0.0514	0.0678	0.2683	0.4584
Cl	0.0000	0.0000	0.0000	0.0000	0.0000	0.0026	0.0000	0.0011	0.0017
K2O	0.2143	0.1733	0.0739	0.1286	1.0119	0.9714	2.1933	2.7299	1.3453
CaO	0.1080	0.3054	0.1201	0.0515	0.0369	0.2827	0.2007	0.5425	0.3078
TiO2	1.1829	1.3238	1.5591	1.0571	0.8229	1.0497	0.9137	1.0194	0.9654
V2O5	0.0398	0.0255	0.0270	0.0274	0.0308	0.0310	0.0483	0.0390	0.0316
Cr2O3	0.0084	0.0080	0.0073	0.0086	0.0103	0.0103	0.0126	0.0127	0.0106
MnO	0.0030	0.0087	0.0029	0.0069	0.0251	0.0314	0.0054	0.0111	0.0115
Fe2O3	1.2649	1.4661	1.5050	2.7405	1.9291	1.3847	1.2002	2.5886	2.4215
Co2O3	0.0011	0.0002	0.0025	0.0000	0.0020	0.0049	0.0008	0.0050	0.0016
NiO	0.0152	0.0119	0.0126	0.0125	0.0139	0.0161	0.0138	0.0135	0.0131
CuO	0.0131	0.0110	0.0125	0.0103	0.0112	0.0123	0.0112	0.0126	0.0117
ZnO	0.0031	0.0019	0.0015	0.0023	0.0028	0.0055	0.0041	0.0107	0.0044
Ga2O3	0.0047	0.0021	0.0081	0.0058	0.0041	0.0043	0.0045	0.0040	0.0038
As2O3	0.0054	0.0020	0.0000	0.0024	0.0052	0.0047	0.0037	0.0020	0.0018
Br	0.0008	0.0001	0.0004	0.0006	0.0000	0.0007	0.0005	0.0010	0.0005
Rb2O	0.0008	0.0012	0.0006	0.0012	0.0068	0.0063	0.0124	0.0135	0.0081
SrO	0.0039	0.0030	0.0030	0.0022	0.0193	0.0071	0.0094	0.0116	0.0083
Y2O3	0.0038	0.0028	0.0021	0.0012	0.0013	0.0023	0.0007	0.0000	0.0016
ZrO2	0.0558	0.0592	0.0615	0.0395	0.0335	0.0321	0.0195	0.0245	0.0353
Nb2O5	0.0013	0.0025	0.0037	0.0022	0.0015	0.0026	0.0011	0.0023	0.0016
MoO3	0.0000	0.0000	0.0000	0.0000	0.0003	0.0004	0.0000	0.0000	0.0001
BaO	0.0166	0.0105	0.0067	0.0000	0.0337	0.0199	0.0591	0.0866	0.0392
HfO2	0.0048	0.0058	0.0071	0.0047	0.0054	0.0058	0.0062	0.0041	0.0049
PbO	0.0000	0.0000	0.0056	0.0000	0.0000	0.0000	0.0000	0.0000	0.0019
ThO2	0.0001	0.0001	0.0000	0.0008	0.0000	0.0001	0.0000	0.0006	0.0004
Ра	0.0002	0.0007	0.0000	0.0002	0.0007	0.0015	0.0039	0.0047	0.0025
U308	0.0004	0.0001	0.0005	0.0001	0.0005	0.0004	0.0000	0.0000	0.0002

Middle BEAR DEN MEMBER									
	3b	4b	6e	6f	6g	6h	7b	7c	15e
	Mass %								
Na2O	0.1159	0.0984	0.0882	0.1282	0.0588	0.0709	0.1752	0.3576	0.1696
MgO	0.7444	0.1682	0.0782	0.6428	0.0482	0.0366	0.5332	0.7842	0.0336
Al2O3	21.6604	13.5440	19.7832	23.2053	16.7434	18.2685	21.7821	23.5319	7.2929
SiO2	72.3447	80.9939	76.3234	71.2140	79.5778	78.9558	72.8824	68.7506	90.3478
P2O5	0.0405	0.0330	0.0325	0.0425	0.0296	0.0293	0.0432	0.0338	0.0222
SO3	0.0766	0.1321	0.0775	0.1168	0.6912	0.1345	0.1641	0.2557	0.1447
Cl	0.0000	0.0000	0.0000	0.0000	0.0000	0.0036	0.0012	0.0000	0.0000
К2О	2.1045	1.2970	1.5986	2.1601	0.9624	0.9634	1.4555	2.3656	0.1412
CaO	0.1652	0.0311	0.0613	0.1202	0.2339	0.0679	0.0300	0.0392	0.0275
TiO2	0.7992	0.6003	0.8795	0.9309	0.9280	0.7831	0.8596	0.9728	0.9783
V2O5	0.0334	0.0191	0.0296	0.0415	0.0337	0.0248	0.0336	0.0556	0.0174
Cr2O3	0.0102	0.0101	0.0106	0.0113	0.0118	0.0100	0.0132	0.0118	0.0060
MnO	0.0067	0.0186	0.0045	0.0057	0.0068	0.0055	0.0071	0.0068	0.0028
Fe2O3	1.7527	2.9283	0.8913	1.2180	0.5009	0.5225	1.8877	2.6610	0.6889
Co2O3	0.0011	0.0022	0.0013	0.0011	0.0011	0.0002	0.0000	0.0001	0.0017
NiO	0.0148	0.0132	0.0122	0.0129	0.0136	0.0126	0.0126	0.0120	0.0122
CuO	0.0115	0.0114	0.0118	0.0128	0.0123	0.0124	0.0112	0.0114	0.0108
ZnO	0.0050	0.0059	0.0038	0.0058	0.0058	0.0031	0.0026	0.0024	0.0024
Ga2O3	0.0039	0.0016	0.0035	0.0056	0.0020	0.0020	0.0049	0.0044	0.0016
As2O3	0.0023	0.0000	0.0009	0.0006	0.0000	0.0000	0.0007	0.0116	0.0012
Br	0.0007	0.0006	0.0001	0.0002	0.0002	0.0003	0.0003	0.0003	0.0003
Rb2O	0.0116	0.0067	0.0094	0.0120	0.0050	0.0050	0.0087	0.0145	0.0006
SrO	0.0094	0.0047	0.0067	0.0099	0.0085	0.0036	0.0084	0.0089	0.0026
Y2O3	0.0009	0.0012	0.0010	0.0010	0.0019	0.0009	0.0008	0.0007	0.0040
ZrO2	0.0268	0.0189	0.0406	0.0254	0.0703	0.0494	0.0342	0.0219	0.0650
Nb2O5	0.0013	0.0001	0.0013	0.0014	0.0007	0.0014	0.0012	0.0018	0.0018
MoO3	0.0001	0.0007	0.0007	0.0000	0.0008	0.0002	0.0000	0.0000	0.0003
BaO	0.0455	0.0487	0.0412	0.0655	0.0397	0.0068	0.0362	0.0660	0.0155
HfO2	0.0046	0.0053	0.0042	0.0024	0.0076	0.0093	0.0062	0.0049	0.0067
PbO	0.0020	0.0024	0.0000	0.0008	0.0027	0.0129	0.0004	0.0069	0.0001
ThO2	0.0000	0.0000	0.0004	0.0000	0.0008	0.0012	0.0010	0.0001	0.0000
Ра	0.0037	0.0019	0.0025	0.0048	0.0005	0.0004	0.0022	0.0050	0.0000
U3O8	0.0004	0.0004	0.0000	0.0005	0.0000	0.0019	0.0003	0.0005	0.0003

Middle BEAR DEN MEMBER									
	15f	15g	15h	15i	15j	15k	17B	18B	18C
	Mass %								
Na2O	0.2336	0.2753	0.3504	0.3237	0.3565	0.2638	0.1631	0.1553	0.1577
MgO	0.0618	0.4909	0.1140	0.7286	0.8142	0.1577	0.6412	0.7756	0.5426
Al2O3	14.2468	19.2785	20.3242	23.1518	23.8707	19.9617	18.3927	23.9805	20.3756
SiO2	82.0137	73.1829	73.0060	67.9109	64.6174	55.0807	74.9376	69.8505	74.2319
P2O5	0.0251	0.0245	0.0312	0.0337	0.0348	0.1551	0.0450	0.0529	0.0331
SO3	0.2524	0.4876	0.2352	0.1684	0.2393	0.2063	0.2601	0.0718	0.0672
Cl	0.0000	0.0017	0.0045	0.0000	0.0038	0.0000	0.0000	0.0000	0.0000
K2O	0.2614	0.6859	1.2831	1.6420	1.7365	1.8408	1.6793	1.9743	1.7510
CaO	0.0549	0.0787	0.0555	0.0754	0.0895	0.3852	0.0625	0.0905	0.1178
TiO2	1.0706	0.9555	0.9371	0.8740	0.9354	0.8401	0.8368	1.1322	1.1676
V2O5	0.0281	0.0321	0.0302	0.0225	0.0441	0.0524	0.0353	0.0412	0.0309
Cr2O3	0.0086	0.0112	0.0123	0.0140	0.0143	0.0130	0.0117	0.0123	0.0108
MnO	0.0037	0.0081	0.0131	0.0139	0.0195	0.0833	0.0125	0.0064	0.0064
Fe2O3	1.6257	4.3766	3.4723	4.8871	7.0896	20.7317	2.7676	1.6663	1.3666
Co2O3	0.0019	0.0000	0.0014	0.0047	0.0000	0.0000	0.0000	0.0016	0.0009
NiO	0.0107	0.0122	0.0110	0.0124	0.0128	0.0136	0.0153	0.0179	0.0132
CuO	0.0125	0.0122	0.0108	0.0121	0.0128	0.0126	0.0140	0.0141	0.0115
ZnO	0.0029	0.0027	0.0033	0.0025	0.0039	0.0045	0.0034	0.0206	0.0063
Ga2O3	0.0031	0.0041	0.0048	0.0048	0.0043	0.0036	0.0028	0.0058	0.0037
As2O3	0.0000	0.0018	0.0000	0.0000	0.0000	0.0070	0.0000	0.0000	0.0000
Br	0.0000	0.0000	0.0006	0.0001	0.0003	0.0002	0.0008	0.0003	0.0003
Rb2O	0.0019	0.0051	0.0091	0.0103	0.0111	0.0122	0.0096	0.0128	0.0107
SrO	0.0071	0.0070	0.0062	0.0108	0.0125	0.0242	0.0070	0.0078	0.0080
Y2O3	0.0030	0.0009	0.0010	0.0018	0.0011	0.0025	0.0051	0.0065	0.0023
ZrO2	0.0479	0.0363	0.0331	0.0273	0.0252	0.0199	0.0429	0.0285	0.0330
Nb2O5	0.0019	0.0017	0.0017	0.0023	0.0017	0.0013	0.0012	0.0010	0.0024
MoO3	0.0002	0.0000	0.0002	0.0000	0.0001	0.0002	0.0001	0.0001	0.0000
BaO	0.0123	0.0191	0.0358	0.0507	0.0369	0.0973	0.0411	0.0578	0.0355
HfO2	0.0047	0.0051	0.0060	0.0079	0.0042	0.0046	0.0040	0.0073	0.0063
PbO	0.0026	0.0005	0.0029	0.0017	0.0034	0.0193	0.0032	0.0040	0.0035
ThO2	0.0000	0.0005	0.0003	0.0010	0.0008	0.0000	0.0007	0.0003	0.0000
Ра	0.0009	0.0012	0.0026	0.0032	0.0033	0.0011	0.0031	0.0037	0.0030
U3O8	0.0000	0.0001	0.0000	0.0004	0.0000	0.0041	0.0003	0.0001	0.0002

Middle BEAR DEN MFMBFR									
MEMBER	18D	A9B	A9C	19D	19E	20B	20C	22B	22C
	Mass %								
Na2O	0.2183	0.2223	0.4354	0.2940	0.2059	0.0919	0.0952	0.2335	0.2589
MgO	0.6522	0.7167	0.1081	0.6277	0.5573	0.3483	0.0531	0.5953	0.1043
Al2O3	25.2385	23.2808	19.7198	27.6969	26.2323	17.9053	17.5458	18.8258	20.7686
SiO2	69.0085	65.8889	74.9689	64.2609	67.9271	74.4843	79.7157	75.5486	71.8753
P2O5	0.0333	0.0354	0.0338	0.0378	0.0349	0.0295	0.0255	0.0356	0.0528
SO3	0.0900	0.1873	0.5419	0.1262	0.2094	2.2025	0.1168	0.1090	0.0813
Cl	0.0000	0.0000	0.0003	0.0000	0.0000	0.0000	0.0000	0.0021	0.0000
К2О	0.9397	1.6590	1.5791	0.9047	1.3106	0.7960	0.8343	1.7692	1.3820
CaO	0.2713	0.0596	0.0686	0.1997	0.0643	1.5739	0.0790	0.0691	0.1405
TiO2	1.2585	1.0876	1.1625	1.1116	1.0714	0.9732	0.7421	0.9548	1.2214
V2O5	0.0398	0.0380	0.0338	0.0386	0.0321	0.0260	0.0271	0.0266	0.0326
Cr2O3	0.0124	0.0122	0.0122	0.0123	0.0118	0.0105	0.0092	0.0115	0.0098
MnO	0.0052	0.0264	0.0052	0.0263	0.0048	0.0390	0.0044	0.0041	0.0523
Fe2O3	2.1031	6.6282	1.1803	4.5253	2.2027	1.3477	0.6415	1.6718	3.8667
Co2O3	0.0012	0.0067	0.0006	0.0035	0.0015	0.0041	0.0025	0.0010	0.0048
NiO	0.0141	0.0132	0.0125	0.0136	0.0143	0.0238	0.0135	0.0130	0.0146
CuO	0.0160	0.0131	0.0116	0.0158	0.0101	0.0099	0.0099	0.0106	0.0126
ZnO	0.0061	0.0030	0.0030	0.0059	0.0044	0.0075	0.0031	0.0056	0.0091
Ga2O3	0.0072	0.0035	0.0037	0.0063	0.0060	0.0025	0.0031	0.0002	0.0040
As2O3	0.0026	0.0022	0.0003	0.0002	0.0018	0.0000	0.0005	0.0000	0.0008
Br	0.0003	0.0003	0.0007	0.0008	0.0001	0.0000	0.0000	0.0000	0.0002
Rb2O	0.0093	0.0107	0.0107	0.0070	0.0117	0.0041	0.0047	0.0111	0.0103
SrO	0.0116	0.0074	0.0084	0.0108	0.0080	0.0033	0.0030	0.0094	0.0087
Y2O3	0.0000	0.0004	0.0027	0.0019	0.0008	0.0046	0.0007	0.0013	0.0019
ZrO2	0.0273	0.0289	0.0369	0.0225	0.0242	0.0726	0.0275	0.0346	0.0323
Nb2O5	0.0023	0.0023	0.0010	0.0027	0.0015	0.0006	0.0009	0.0017	0.0021
MoO3	0.0000	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0006	0.0002
BaO	0.0189	0.0530	0.0464	0.0194	0.0414	0.0295	0.0374	0.0400	0.0421
HfO2	0.0079	0.0067	0.0055	0.0065	0.0050	0.0059	0.0015	0.0049	0.0062
PbO	0.0000	0.0000	0.0026	0.0153	0.0000	0.0024	0.0003	0.0044	0.0006
ThO2	0.0001	0.0011	0.0000	0.0031	0.0000	0.0011	0.0006	0.0014	0.0000
Ра	0.0035	0.0045	0.0030	0.0001	0.0042	0.0000	0.0006	0.0032	0.0027
U3O8	0.0008	0.0005	0.0004	0.0026	0.0004	0.0000	0.0005	0.0000	0.0002

Middle BEAR DEN MEMBER									
	22D	22F	23D	23E	23F	23G	24D	24E	24F
	Mass %								
Na2O	0.3868	0.3672	0.2143	0.2160	0.1804	0.3143	0.2035	0.2091	0.4868
MgO	0.1095	0.7165	1.0048	0.5477	0.0684	1.1872	0.4569	0.8952	0.6643
Al2O3	28.9471	33.7991	21.3285	26.0630	20.4461	24.8336	17.3215	22.5457	19.5222
SiO2	66.1773	59.8262	53.6253	68.4954	75.7780	65.9345	74.3139	65.7874	71.9807
P2O5	0.0384	0.0433	0.0730	0.0375	0.0271	0.0632	0.0422	0.0477	0.1002
SO3	0.0864	0.0845	0.2459	0.1459	0.1372	0.1207	0.7511	0.3850	0.2713
Cl	0.0000	0.0000	0.0000	0.0039	0.0000	0.0010	0.0053	0.0023	0.0000
K2O	0.7486	0.8186	1.6560	1.2028	1.0152	3.7784	1.1643	2.6779	0.6531
CaO	0.1004	0.2832	0.2000	0.0606	0.0422	0.1920	0.0443	0.0659	0.0795
TiO2	1.0640	1.2013	0.9317	0.8996	0.7082	0.9383	0.8713	0.9239	2.7478
V2O5	0.0349	0.0436	0.0527	0.0287	0.0279	0.0514	0.0388	0.0556	0.0831
Cr2O3	0.0108	0.0123	0.0132	0.0120	0.0095	0.0146	0.0123	0.0154	0.0219
MnO	0.0062	0.0058	0.0768	0.0033	0.0030	0.0070	0.0130	0.0148	0.0357
Fe2O3	2.1626	2.6712	20.4251	2.1470	1.4548	2.2924	4.6170	6.2072	3.0025
Co2O3	0.0008	0.0022	0.0032	0.0013	0.0012	0.0020	0.0007	0.0023	0.0068
NiO	0.0153	0.0148	0.0133	0.0134	0.0118	0.0178	0.0110	0.0145	0.0292
CuO	0.0137	0.0150	0.0136	0.0102	0.0127	0.0389	0.0114	0.0132	0.0519
ZnO	0.0073	0.0068	0.0019	0.0036	0.0041	0.0198	0.0027	0.0125	0.0199
Ga2O3	0.0058	0.0082	0.0044	0.0050	0.0034	0.0042	0.0033	0.0051	0.0064
As2O3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0060	0.0034	0.0020	0.0000
Br	0.0006	0.0004	0.0004	0.0000	0.0005	0.0003	0.0000	0.0005	0.0000
Rb2O	0.0057	0.0065	0.0085	0.0077	0.0063	0.0187	0.0064	0.0166	0.0037
SrO	0.0071	0.0119	0.0106	0.0064	0.0032	0.0166	0.0081	0.0076	0.0210
Y2O3	0.0017	0.0000	0.0009	0.0006	0.0012	0.0041	0.0022	0.0006	0.0179
ZrO2	0.0274	0.0208	0.0199	0.0255	0.0261	0.0159	0.0457	0.0222	0.0644
Nb2O5	0.0018	0.0014	0.0005	0.0012	0.0005	0.0003	0.0016	0.0019	0.0030
MoO3	0.0004	0.0000	0.0000	0.0000	0.0002	0.0000	0.0001	0.0002	0.0000
BaO	0.0296	0.0266	0.0457	0.0497	0.0243	0.1143	0.0285	0.0555	0.1089
HfO2	0.0028	0.0048	0.0048	0.0048	0.0033	0.0048	0.0032	0.0045	0.0045
PbO	0.0054	0.0061	0.0143	0.0033	0.0012	0.0000	0.0112	0.0000	0.0092
ThO2	0.0005	0.0010	0.0072	0.0014	0.0000	0.0006	0.0034	0.0021	0.0000
Ра	0.0010	0.0005	0.0000	0.0025	0.0020	0.0071	0.0000	0.0055	0.0008
U3O8	0.0001	0.0002	0.0036	0.0000	0.0000	0.0000	0.0017	0.0000	0.0034

Middle BEAR DEN MEMBER									
	24G	43C	43D	43E	46B	46C	46D	46E	Mean
	Mass %								
Na2O	0.4033	0.1783	0.1420	0.1970	0.0407	0.0568	0.0699	0.1765	0.2146
MgO	1.1600	1.3297	1.0419	1.8993	0.1758	0.3213	0.0808	0.9451	0.5401
Al2O3	19.8072	21.0460	20.5209	18.9572	11.6339	21.6542	24.3102	25.5717	21.0208
SiO2	71.4952	70.7816	72.9774	71.0491	85.1049	73.7201	68.3933	64.5647	71.5888
P2O5	0.0398	0.0434	0.0359	0.0681	0.0192	0.0215	0.0313	0.0508	0.0419
SO3	0.5644	0.1006	0.0803	0.0908	0.1609	0.1979	0.2965	0.3927	0.2627
Cl	0.0031	0.0222	0.0056	0.0037	0.0000	0.0000	0.0024	0.0000	0.0015
К2О	3.7364	3.4472	2.7290	3.5355	0.2120	0.7110	1.1432	2.4876	1.5635
CaO	0.0250	0.3811	0.1324	0.1804	0.1177	0.1734	0.0875	0.1663	0.1510
TiO2	1.0465	0.8225	0.8194	0.7603	0.8773	0.7552	0.8457	0.9149	0.9816
V2O5	0.0396	0.0368	0.0277	0.0401	0.0198	0.0181	0.0440	0.0420	0.0360
Cr2O3	0.0131	0.0141	0.0106	0.0127	0.0091	0.0117	0.0121	0.0150	0.0119
MnO	0.0192	0.0057	0.0046	0.0117	0.0021	0.0065	0.0118	0.0203	0.0147
Fe2O3	1.4317	1.5746	1.2949	2.9620	1.5129	2.2372	4.5494	4.4702	3.4140
Co2O3	0.0024	0.0018	0.0008	0.0000	0.0006	0.0011	0.0015	0.0000	0.0017
NiO	0.0162	0.0174	0.0139	0.0163	0.0133	0.0127	0.0147	0.0132	0.0142
CuO	0.0252	0.0153	0.0132	0.0155	0.0112	0.0097	0.0124	0.0120	0.0142
ZnO	0.0181	0.0084	0.0091	0.0154	0.0032	0.0043	0.0039	0.0052	0.0064
Ga2O3	0.0047	0.0044	0.0033	0.0033	0.0022	0.0030	0.0046	0.0043	0.0041
As2O3	0.0000	0.0060	0.0007	0.0076	0.0011	0.0000	0.0074	0.0136	0.0019
Br	0.0006	0.0016	0.0020	0.0003	0.0000	0.0002	0.0005	0.0006	0.0004
Rb2O	0.0217	0.0232	0.0149	0.0187	0.0019	0.0058	0.0065	0.0176	0.0097
SrO	0.0091	0.0137	0.0078	0.0192	0.0031	0.0047	0.0066	0.0117	0.0089
Y2O3	0.0012	0.0044	0.0022	0.0014	0.0023	0.0012	0.0015	0.0003	0.0021
ZrO2	0.0218	0.0211	0.0220	0.0236	0.0549	0.0355	0.0337	0.0246	0.0331
Nb2O5	0.0016	0.0010	0.0012	0.0012	0.0018	0.0009	0.0013	0.0014	0.0015
MoO3	0.0004	0.0000	0.0000	0.0008	0.0002	0.0002	0.0000	0.0005	0.0002
BaO	0.0757	0.0841	0.0578	0.0833	0.0125	0.0265	0.0197	0.0651	0.0452
HfO2	0.0046	0.0040	0.0060	0.0025	0.0044	0.0029	0.0053	0.0054	0.0051
PbO	0.0040	0.0000	0.0136	0.0161	0.0000	0.0038	0.0000	0.0000	0.0042
ThO2	0.0004	0.0013	0.0029	0.0008	0.0001	0.0000	0.0000	0.0011	0.0008
Ра	0.0078	0.0085	0.0005	0.0061	0.0000	0.0015	0.0020	0.0056	0.0026
U3O8	0.0000	0.0000	0.0055	0.0000	0.0009	0.0011	0.0002	0.0000	0.0007

Lower BEAR DEN MEMBER						
	4c	18E	19F	22E	24H	Mean
	Mass %					
Na2O	0.0629	0.2741	0.4736	0.4528	0.4137	0.3354
MgO	0.1883	0.4386	0.6882	0.1014	0.1845	0.3202
Al2O3	13.7809	18.6541	32.1276	23.0859	22.9405	22.1178
SiO2	81.0958	74.1954	61.5271	71.9935	70.7538	71.9131
P2O5	0.0276	0.0310	0.0405	0.0354	0.0347	0.0338
SO3	0.1822	0.1741	0.3698	0.3367	0.8312	0.3788
Cl	0.0000	0.0000	0.0050	0.0000	0.0087	0.0027
K2O	1.1219	1.2290	0.7336	0.8291	2.5888	1.3005
CaO	0.0503	0.0892	0.1095	0.1035	0.0310	0.0767
TiO2	0.5480	0.9614	1.1339	1.0038	0.8548	0.9004
V2O5	0.0241	0.0299	0.0366	0.0319	0.0327	0.0310
Cr2O3	0.0092	0.0103	0.0135	0.0109	0.0121	0.0112
MnO	0.0084	0.0200	0.0052	0.0051	0.0197	0.0117
Fe2O3	2.7922	3.7592	2.6149	1.8786	1.1226	2.4335
Co2O3	0.0008	0.0011	0.0036	0.0014	0.0024	0.0019
NiO	0.0124	0.0146	0.0170	0.0139	0.0150	0.0146
CuO	0.0113	0.0106	0.0136	0.0114	0.0164	0.0127
ZnO	0.0041	0.0045	0.0184	0.0048	0.0128	0.0089
Ga2O3	0.0013	0.0040	0.0087	0.0054	0.0033	0.0045
As2O3	0.0000	0.0008	0.0031	0.0007	0.0037	0.0017
Br	0.0000	0.0003	0.0006	0.0003	0.0000	0.0002
Rb2O	0.0060	0.0100	0.0067	0.0057	0.0143	0.0085
SrO	0.0038	0.0071	0.0078	0.0076	0.0087	0.0070
Y2O3	0.0000	0.0013	0.0011	0.0023	0.0012	0.0012
ZrO2	0.0241	0.0366	0.0189	0.0352	0.0205	0.0271
Nb2O5	0.0000	0.0015	0.0015	0.0013	0.0007	0.0010
MoO3	0.0000	0.0000	0.0000	0.0002	0.0000	0.0000
BaO	0.0359	0.0334	0.0127	0.0346	0.0633	0.0360
HfO2	0.0040	0.0043	0.0052	0.0050	0.0044	0.0046
PbO	0.0025	0.0007	0.0000	0.0007	0.0000	0.0008
ThO2	0.0006	0.0004	0.0000	0.0000	0.0000	0.0002
Ра	0.0012	0.0025	0.0020	0.0009	0.0041	0.0021
U308	0.0002	0.0000	0.0001	0.0000	0.0003	0.0001

RHAME BED									
	1a	2a	2b	10a	10b	11a	11b	13a	13b
	Mass %								
Na2O	0.0510	0.0893	0.1196	0.3250	0.2671	0.1046	0.1240	0.0937	0.3508
MgO	0.3003	0.7057	0.5828	1.0183	1.3236	0.7045	0.8404	0.9360	1.7884
Al2O3	17.1156	19.8113	19.6366	12.7967	17.4977	15.3633	18.7389	14.6373	16.7577
SiO2	80.2154	74.5500	75.0887	80.2840	74.2844	78.6370	75.6081	78.5098	71.7925
P2O5	0.0251	0.0299	0.0389	0.0271	0.0314	0.0218	0.0293	0.0277	0.1480
SO3	0.0410	0.1020	0.0951	0.5093	0.3963	0.0792	0.0958	0.0661	0.3435
Cl	0.0039	0.0054	0.0000	0.0000	0.0003	0.0000	0.0043	0.0003	0.0034
K2O	0.8500	2.4707	2.1739	2.4116	2.9317	1.9475	1.8046	2.6103	3.6418
CaO	0.1532	0.0909	0.0906	0.0451	0.0609	0.1726	0.2109	0.1100	0.2475
TiO2	0.5498	0.6598	0.8390	0.6991	0.6069	0.7657	0.7281	0.9640	0.6771
V2O5	0.0207	0.0216	0.0375	0.0205	0.0201	0.0140	0.0146	0.0249	0.0245
Cr2O3	0.0096	0.0096	0.0137	0.0084	0.0107	0.0094	0.0095	0.0095	0.0097
MnO	0.0042	0.0035	0.0064	0.0053	0.0072	0.0059	0.0048	0.0031	0.0224
Fe2O3	0.5539	1.2958	1.1093	1.7103	2.4113	2.0209	1.6265	1.8466	3.9778
Co2O3	0.0012	0.0014	0.0018	0.0007	0.0014	0.0003	0.0008	0.0003	0.0007
NiO	0.0153	0.0137	0.0149	0.0137	0.0140	0.0119	0.0140	0.0124	0.0153
CuO	0.0111	0.0115	0.0159	0.0138	0.0119	0.0108	0.0153	0.0128	0.0145
ZnO	0.0101	0.0061	0.0114	0.0058	0.0072	0.0031	0.0047	0.0045	0.0164
Ga2O3	0.0025	0.0044	0.0039	0.0023	0.0026	0.0046	0.0042	0.0069	0.0031
As2O3	0.0000	0.0025	0.0017	0.0015	0.0000	0.0000	0.0000	0.0000	0.0011
Br	0.0002	0.0000	0.0003	0.0003	0.0000	0.0000	0.0007	0.0002	0.0001
Rb2O	0.0049	0.0157	0.0115	0.0205	0.0223	0.0151	0.0183	0.0198	0.0208
SrO	0.0032	0.0047	0.0095	0.0057	0.0064	0.0059	0.0090	0.0061	0.0134
Y2O3	0.0000	0.0018	0.0022	0.0017	0.0013	0.0017	0.0012	0.0015	0.0023
ZrO2	0.0162	0.0297	0.0314	0.0283	0.0238	0.0394	0.0313	0.0354	0.0313
Nb2O5	0.0002	0.0016	0.0013	0.0010	0.0010	0.0019	0.0016	0.0030	0.0014
MoO3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0006	0.0000	0.0000	0.0000
BaO	0.0353	0.0513	0.0529	0.0325	0.0409	0.0424	0.0415	0.0396	0.0775
HfO2	0.0028	0.0046	0.0045	0.0022	0.0053	0.0042	0.0066	0.0061	0.0021
PbO	0.0025	0.0000	0.0000	0.0000	0.0039	0.0049	0.0042	0.0044	0.0070
ThO2	0.0000	0.0000	0.0010	0.0004	0.0001	0.0007	0.0006	0.0000	0.0011
Ра	0.0008	0.0054	0.0033	0.0083	0.0083	0.0055	0.0056	0.0071	0.0066
U3O8	0.0000	0.0000	0.0004	0.0006	0.0000	0.0006	0.0006	0.0006	0.0002

DED	13c	13d	14a	14b	26A	26B	28A	28B	28C
	Mass %								
Na2O	0.3071	0.2189	0.1824	0.1194	0.0552	0.0803	0.0275	0.0504	0.0499
MgO	0.4629	1.1341	0.8807	0.1234	0.5779	1.2576	0.3007	0.3724	0.3044
Al2O3	10.2219	17.1619	13.2731	14.5336	9.8576	19.6959	6.3784	10.6924	11.4708
SiO2	85.5133	72.8351	80.6660	81.6515	86.1617	65.6507	90.5982	85.9299	85.0575
P2O5	0.0232	0.0556	0.0237	0.0246	0.0304	0.0379	0.0230	0.0248	0.0241
SO3	0.2691	0.1507	0.1495	0.0946	0.0737	4.8124	0.0557	0.0687	0.0823
Cl	0.0000	0.0000	0.0027	0.0033	0.0000	0.0000	0.0000	0.0073	0.0000
K2O	1.1161	3.3637	1.7257	1.3809	0.9907	2.1295	0.4032	0.6126	1.4380
CaO	0.1164	0.1055	0.1238	0.0810	0.0585	3.1429	0.1630	0.2199	0.1116
TiO2	0.8421	0.6842	0.9795	0.6411	0.8831	0.7723	1.1303	0.9220	0.3974
V2O5	0.0130	0.0212	0.0225	0.0205	0.0232	0.0278	0.0149	0.0184	0.0113
Cr2O3	0.0085	0.0101	0.0090	0.0081	0.0077	0.0103	0.0071	0.0069	0.0072
MnO	0.0051	0.0439	0.0056	0.0047	0.0030	0.0047	0.0023	0.0044	0.0068
Fe2O3	0.9497	4.0393	1.8060	1.1843	1.1219	2.1443	0.7599	0.9428	0.9179
Co2O3	0.0016	0.0000	0.0014	0.0013	0.0026	0.0009	0.0013	0.0008	0.0004
NiO	0.0136	0.0141	0.0117	0.0112	0.0127	0.0140	0.0115	0.0117	0.0113
CuO	0.0107	0.0139	0.0108	0.0104	0.0109	0.0138	0.0105	0.0113	0.0091
ZnO	0.0060	0.0079	0.0036	0.0028	0.0022	0.0076	0.0015	0.0019	0.0018
Ga2O3	0.0011	0.0029	0.0037	0.0020	0.0040	0.0060	0.0027	0.0018	0.0014
As2O3	0.0000	0.0052	0.0028	0.0006	0.0000	0.0000	0.0000	0.0000	0.0000
Br	0.0004	0.0000	0.0002	0.0005	0.0000	0.0000	0.0001	0.0002	0.0002
Rb2O	0.0121	0.0202	0.0202	0.0104	0.0080	0.0173	0.0025	0.0045	0.0068
SrO	0.0044	0.0076	0.0057	0.0035	0.0045	0.0309	0.0035	0.0034	0.0036
Y2O3	0.0036	0.0025	0.0018	0.0024	0.0032	0.0006	0.0048	0.0028	0.0017
ZrO2	0.0522	0.0311	0.0310	0.0474	0.0613	0.0225	0.0580	0.0568	0.0384
Nb2O5	0.0023	0.0013	0.0033	0.0012	0.0017	0.0015	0.0026	0.0048	0.0003
MoO3	0.0000	0.0000	0.0000	0.0008	0.0000	0.0000	0.0001	0.0000	0.0002
BaO	0.0301	0.0571	0.0408	0.0244	0.0318	0.1004	0.0127	0.0170	0.0346
HfO2	0.0042	0.0051	0.0052	0.0061	0.0080	0.0054	0.0093	0.0047	0.0054
PbO	0.0039	0.0000	0.0000	0.0007	0.0021	0.0055	0.0037	0.0046	0.0026
ThO2	0.0008	0.0000	0.0008	0.0000	0.0000	0.0009	0.0008	0.0003	0.0006
Ра	0.0046	0.0069	0.0068	0.0033	0.0023	0.0055	0.0012	0.0000	0.0024
U3O8	0.0000	0.0000	0.0000	0.0000	0.0001	0.0006	0.0003	0.0005	0.0000

RHAME									
DED	28D	28E	29A	29B	29C	29D	34A	34B	34C
	Mass %								
Na2O	0.1224	0.1364	0.0378	0.0634	0.0751	0.0884	0.0126	0.0457	0.0192
MgO	1.0581	5.7105	0.0455	0.5776	0.9831	0.6784	0.2875	0.5109	0.3498
Al2O3	14.6838	15.8235	7.3415	15.3389	22.6883	22.9774	6.0514	20.4350	15.0006
SiO2	76.8079	62.7308	90.4257	79.6225	70.2812	71.9153	90.9118	75.0752	81.9251
P2O5	0.0773	0.1634	0.0198	0.0268	0.0282	0.0431	0.0221	0.0286	0.0253
SO3	0.6849	0.1641	0.0642	0.0661	0.0612	0.1051	0.0510	0.0415	0.0627
Cl	0.0003	0.0000	0.0000	0.0044	0.0004	0.0000	0.0000	0.0017	0.0077
К2О	2.8926	3.8557	0.4189	1.8528	2.9744	1.4035	0.5389	1.7134	1.2310
CaO	0.5224	4.8604	0.0446	0.0973	0.1348	0.1985	0.1132	0.2092	0.1175
TiO2	0.6454	0.6293	0.8543	0.9958	0.7481	0.8263	1.1505	0.6985	0.4440
V2O5	0.0272	0.0228	0.0085	0.0231	0.0273	0.0423	0.0192	0.0128	0.0134
Cr2O3	0.0097	0.0095	0.0066	0.0086	0.0112	0.0147	0.0060	0.0090	0.0071
MnO	0.0078	0.0977	0.0025	0.0061	0.0057	0.0099	0.0029	0.0041	0.0044
Fe2O3	2.2711	5.5910	0.5716	1.1796	1.8424	1.5407	0.6775	1.0822	0.7009
Co2O3	0.0000	0.0029	0.0004	0.0006	0.0004	0.0032	0.0004	0.0002	0.0000
NiO	0.0130	0.0159	0.0115	0.0115	0.0124	0.0144	0.0113	0.0110	0.0122
CuO	0.0137	0.0128	0.0100	0.0098	0.0097	0.0168	0.0140	0.0108	0.0101
ZnO	0.0089	0.0133	0.0016	0.0025	0.0030	0.0059	0.0024	0.0020	0.0005
Ga2O3	0.0000	0.0029	0.0019	0.0049	0.0032	0.0036	0.0021	0.0033	0.0022
As2O3	0.0003	0.0042	0.0000	0.0003	0.0006	0.0000	0.0001	0.0000	0.0009
Br	0.0002	0.0000	0.0000	0.0000	0.0004	0.0004	0.0010	0.0008	0.0006
Rb2O	0.0160	0.0212	0.0033	0.0118	0.0203	0.0107	0.0055	0.0116	0.0072
SrO	0.0103	0.0113	0.0018	0.0068	0.0079	0.0123	0.0047	0.0074	0.0035
Y2O3	0.0035	0.0026	0.0031	0.0024	0.0014	0.0010	0.0023	0.0016	0.0011
ZrO2	0.0445	0.0203	0.0876	0.0454	0.0269	0.0368	0.0770	0.0393	0.0278
Nb2O5	0.0014	0.0006	0.0057	0.0022	0.0007	0.0018	0.0029	0.0010	0.0002
MoO3	0.0000	0.0000	0.0000	0.0003	0.0000	0.0001	0.0000	0.0002	0.0000
BaO	0.0572	0.0849	0.0110	0.0282	0.0375	0.0328	0.0209	0.0315	0.0148
HfO2	0.0082	0.0039	0.0065	0.0044	0.0053	0.0046	0.0080	0.0050	0.0065
PbO	0.0036	0.0000	0.0015	0.0008	0.0005	0.0075	0.0009	0.0033	0.0006
ThO2	0.0008	0.0000	0.0000	0.0004	0.0003	0.0010	0.0000	0.0000	0.0000
Ра	0.0066	0.0079	0.0002	0.0044	0.0077	0.0035	0.0012	0.0030	0.0031
U3O8	0.0009	0.0003	0.0000	0.0003	0.0004	0.0000	0.0007	0.0002	0.0000

RHAME									
BED	34D	34E	34F	34G	34H	35A	35B	35C	35D
	Mass %								
Na2O	0.0698	0.0927	0.1010	0.0507	0.0889	0.0283	0.0693	0.0587	0.0816
MgO	0.8746	0.7315	0.6161	0.3401	0.5377	0.5154	1.1085	0.9512	0.9446
Al2O3	24.0336	22.7280	23.3688	18.4420	22.0579	20.7299	19.2402	21.5457	21.8916
SiO2	69.1228	70.6790	70.6040	78.1274	72.8447	76.2109	73.9669	70.9788	71.2100
P2O5	0.0339	0.0349	0.0309	0.0292	0.0375	0.0318	0.0416	0.0309	0.0352
SO3	0.0491	0.1342	0.1143	0.0751	0.0689	0.1347	0.7021	1.3885	0.0837
Cl	0.0126	0.0000	0.0018	0.0000	0.0040	0.0001	0.0023	0.0000	0.0000
К2О	2.9399	2.1445	1.9534	1.2538	1.9121	0.6870	1.5670	1.9908	3.2300
CaO	0.2853	0.6154	0.5513	0.1518	0.3044	0.1511	0.4874	0.9753	0.1095
TiO2	0.8305	1.0536	0.9876	0.7181	0.9029	0.5377	0.8961	0.6422	0.6669
V2O5	0.0313	0.0444	0.0518	0.0226	0.0379	0.0237	0.0402	0.0113	0.0213
Cr2O3	0.0112	0.0135	0.0131	0.0108	0.0142	0.0114	0.0119	0.0108	0.0097
MnO	0.0060	0.0040	0.0054	0.0035	0.0040	0.0030	0.0445	0.0044	0.0050
Fe2O3	1.5427	1.5594	1.4202	0.6494	1.0220	0.8078	1.5873	1.2833	1.5379
Co2O3	0.0017	0.0000	0.0001	0.0013	0.0016	0.0014	0.0139	0.0007	0.0011
NiO	0.0122	0.0132	0.0149	0.0124	0.0145	0.0173	0.0396	0.0131	0.0122
CuO	0.0107	0.0131	0.0146	0.0113	0.0148	0.0121	0.0124	0.0133	0.0119
ZnO	0.0027	0.0053	0.0081	0.0044	0.0090	0.0111	0.0396	0.0048	0.0076
Ga2O3	0.0042	0.0058	0.0045	0.0025	0.0015	0.0013	0.0051	0.0037	0.0032
As2O3	0.0000	0.0000	0.0035	0.0021	0.0000	0.0005	0.0000	0.0037	0.0007
Br	0.0000	0.0006	0.0008	0.0005	0.0008	0.0003	0.0000	0.0006	0.0007
Rb2O	0.0199	0.0139	0.0125	0.0069	0.0114	0.0050	0.0125	0.0133	0.0194
SrO	0.0095	0.0144	0.0128	0.0044	0.0109	0.0058	0.0126	0.0069	0.0049
Y2O3	0.0013	0.0019	0.0016	0.0016	0.0024	0.0009	0.0043	0.0027	0.0022
ZrO2	0.0254	0.0299	0.0316	0.0311	0.0336	0.0432	0.0359	0.0273	0.0326
Nb2O5	0.0017	0.0007	0.0018	0.0000	0.0014	0.0008	0.0019	0.0012	0.0018
MoO3	0.0000	0.0000	0.0001	0.0006	0.0000	0.0000	0.0003	0.0008	0.0000
BaO	0.0531	0.0517	0.0641	0.0390	0.0485	0.0194	0.0435	0.0257	0.0602
HfO2	0.0020	0.0046	0.0047	0.0045	0.0041	0.0055	0.0026	0.0065	0.0059
PbO	0.0034	0.0051	0.0000	0.0000	0.0046	0.0008	0.0046	0.0000	0.0018
ThO2	0.0012	0.0000	0.0000	0.0000	0.0007	0.0003	0.0020	0.0000	0.0000
Ра	0.0074	0.0047	0.0044	0.0027	0.0030	0.0011	0.0037	0.0038	0.0063
U3O8	0.0004	0.0000	0.0002	0.0002	0.0001	0.0004	0.0002	0.0000	0.0005

DED	35E	36A	36B	37A	37B	38A	38B	38C	38D
	Mass %								
Na2O	0.1045	0.0545	0.0742	0.0813	0.0652	0.0529	0.0816	0.0613	0.0487
MgO	1.3964	0.1135	0.7175	0.8317	0.7374	0.7325	0.7703	0.1073	0.4672
Al2O3	18.9926	15.2038	17.0646	22.9985	22.1069	16.2905	20.3996	18.3423	15.2425
SiO2	70.8412	80.5065	76.6442	68.7304	72.3727	78.2554	73.9224	78.2775	80.3058
P2O5	0.0376	0.0318	0.0355	0.0323	0.0321	0.0261	0.0297	0.0273	0.0248
SO3	0.3346	0.0855	0.3354	1.9209	0.1127	0.0627	0.1841	0.0812	0.1995
Cl	0.0000	0.0000	0.0061	0.0000	0.0000	0.0015	0.0000	0.0000	0.0015
K2O	4.1908	2.0064	2.5693	1.5773	2.0163	1.9012	1.9659	1.3793	1.8509
CaO	0.2377	0.0954	0.0673	1.2906	0.1492	0.2325	0.2706	0.0735	0.1000
TiO2	0.6388	0.6719	0.7135	0.8744	0.8254	1.0860	0.8876	0.5962	0.5512
V2O5	0.0219	0.0159	0.0220	0.0276	0.0312	0.0271	0.0274	0.0211	0.0192
Cr2O3	0.0109	0.0094	0.0084	0.0106	0.0094	0.0085	0.0111	0.0086	0.0092
MnO	0.0076	0.0059	0.0049	0.0139	0.0066	0.0091	0.0052	0.0038	0.0036
Fe2O3	2.9881	1.0404	1.5809	1.4610	1.3674	1.1681	1.3161	0.8911	1.0393
Co2O3	0.0024	0.0001	0.0017	0.0040	0.0018	0.0000	0.0000	0.0007	0.0002
NiO	0.0127	0.0131	0.0118	0.0204	0.0132	0.0143	0.0118	0.0114	0.0108
CuO	0.0133	0.0105	0.0119	0.0106	0.0110	0.0096	0.0099	0.0108	0.0114
ZnO	0.0161	0.0060	0.0097	0.0092	0.0095	0.0029	0.0025	0.0022	0.0019
Ga2O3	0.0038	0.0025	0.0029	0.0058	0.0049	0.0059	0.0034	0.0034	0.0037
As2O3	0.0046	0.0031	0.0044	0.0015	0.0000	0.0012	0.0000	0.0000	0.0000
Br	0.0006	0.0005	0.0001	0.0007	0.0005	0.0000	0.0006	0.0000	0.0004
Rb2O	0.0225	0.0127	0.0149	0.0108	0.0140	0.0130	0.0139	0.0089	0.0097
SrO	0.0094	0.0033	0.0060	0.0136	0.0097	0.0079	0.0109	0.0037	0.0052
Y2O3	0.0027	0.0025	0.0042	0.0019	0.0017	0.0028	0.0010	0.0014	0.0016
ZrO2	0.0228	0.0563	0.0438	0.0437	0.0385	0.0351	0.0345	0.0524	0.0439
Nb2O5	0.0014	0.0011	0.0011	0.0022	0.0011	0.0028	0.0012	0.0008	0.0007
MoO3	0.0000	0.0004	0.0000	0.0000	0.0000	0.0003	0.0001	0.0000	0.0001
BaO	0.0710	0.0343	0.0339	0.0130	0.0464	0.0417	0.0270	0.0242	0.0306
HfO2	0.0042	0.0072	0.0051	0.0072	0.0043	0.0035	0.0045	0.0061	0.0065
PbO	0.0000	0.0000	0.0000	0.0000	0.0057	0.0000	0.0023	0.0003	0.0058
ThO2	0.0012	0.0007	0.0000	0.0015	0.0007	0.0004	0.0005	0.0002	0.0000
Ра	0.0082	0.0041	0.0047	0.0034	0.0044	0.0044	0.0037	0.0027	0.0035
U3O8	0.0004	0.0007	0.0000	0.0000	0.0001	0.0001	0.0006	0.0003	0.0006

RHAME									
DED	41A	41B	44A	44B	44C	45A	45B	45C	47A
	Mass %								
Na2O	0.1066	0.0650	0.0528	0.1084	0.1351	0.2962	0.4195	0.2550	0.1905
MgO	1.2426	0.1030	0.9077	0.9225	1.3010	0.8560	1.0517	0.9954	1.0060
Al2O3	20.3957	17.4331	11.8482	15.4054	20.4990	25.4888	27.1930	21.1837	12.9309
SiO2	71.7853	78.1240	82.2429	75.6203	70.9962	66.9435	65.4716	71.1094	79.1024
P2O5	0.0387	0.0300	0.0262	0.0260	0.0279	0.0304	0.0431	0.0497	0.0289
SO3	0.1988	0.0977	0.1604	2.0499	0.3451	0.8566	0.3092	0.2416	1.0586
Cl	0.0004	0.0000	0.0020	0.0000	0.0000	0.0000	0.0000	0.0001	0.0037
К2О	2.8489	1.9819	1.3407	2.2159	3.2839	1.8882	2.9412	3.1091	1.7865
CaO	0.1965	0.0895	1.0922	1.2781	0.1511	0.4634	0.0899	0.0805	0.8532
TiO2	0.8760	0.6317	1.1920	0.9318	0.8374	0.9345	0.7483	0.8364	0.6679
V2O5	0.0205	0.0154	0.0182	0.0210	0.0349	0.0472	0.0397	0.0266	0.0212
Cr2O3	0.0124	0.0085	0.0070	0.0077	0.0106	0.0140	0.0144	0.0138	0.0086
MnO	0.0074	0.0067	0.0041	0.0045	0.0117	0.0105	0.0079	0.0068	0.0069
Fe2O3	2.0414	1.2480	0.9604	1.2249	2.1817	1.9964	1.4439	1.9094	2.1830
Co2O3	0.0016	0.0013	0.0032	0.0060	0.0048	0.0044	0.0023	0.0002	0.0027
NiO	0.0136	0.0121	0.0138	0.0258	0.0166	0.0274	0.0220	0.0134	0.0123
CuO	0.0135	0.0112	0.0101	0.0108	0.0120	0.0112	0.0134	0.0134	0.0104
ZnO	0.0068	0.0119	0.0018	0.0187	0.0196	0.0189	0.0226	0.0082	0.0031
Ga2O3	0.0071	0.0025	0.0022	0.0041	0.0060	0.0025	0.0056	0.0049	0.0029
As2O3	0.0000	0.0017	0.0000	0.0000	0.0009	0.0000	0.0000	0.0077	0.0025
Br	0.0004	0.0004	0.0005	0.0004	0.0006	0.0000	0.0004	0.0000	0.0009
Rb2O	0.0217	0.0124	0.0097	0.0141	0.0206	0.0107	0.0158	0.0181	0.0124
SrO	0.0114	0.0061	0.0074	0.0068	0.0061	0.0113	0.0117	0.0107	0.0087
Y2O3	0.0013	0.0017	0.0031	0.0038	0.0016	0.0005	0.0001	0.0010	0.0022
ZrO2	0.0267	0.0453	0.0541	0.0435	0.0277	0.0195	0.0157	0.0188	0.0504
Nb2O5	0.0021	0.0011	0.0029	0.0019	0.0018	0.0015	0.0008	0.0018	0.0013
MoO3	0.0000	0.0000	0.0001	0.0000	0.0003	0.0000	0.0000	0.0000	0.0004
BaO	0.1081	0.0481	0.0209	0.0333	0.0480	0.0504	0.0978	0.0731	0.0296
HfO2	0.0024	0.0045	0.0087	0.0069	0.0091	0.0058	0.0061	0.0040	0.0075
PbO	0.0039	0.0000	0.0026	0.0028	0.0008	0.0070	0.0059	0.0000	0.0000
ThO2	0.0000	0.0007	0.0008	0.0000	0.0004	0.0001	0.0000	0.0000	0.0003
Ра	0.0082	0.0044	0.0033	0.0046	0.0075	0.0031	0.0064	0.0071	0.0036
U3O8	0.0000	0.0001	0.0000	0.0001	0.0000	0.0000	0.0000	0.0001	0.0005

DED	50B	51A	51B	51C	51D	53A	53B	55A	56E
	Mass %								
Na2O	0.0771	0.0996	0.1182	0.0805	0.0952	0.0591	0.0879	0.0288	0.2643
MgO	0.9774	0.1566	0.8364	0.1179	0.8272	0.4955	0.5558	0.7289	0.5113
Al2O3	20.5447	22.9416	26.0536	20.9506	25.4184	13.0187	12.6107	17.5623	10.3709
SiO2	71.0759	71.4102	68.5613	75.2744	68.4559	82.1618	82.4454	72.2091	85.4974
P2O5	0.0290	0.0353	0.0385	0.0388	0.0407	0.0234	0.0225	0.0298	0.0256
SO3	1.3939	0.7937	0.0897	0.1160	0.1228	0.0829	0.0708	2.9396	0.9148
Cl	0.0059	0.0029	0.0103	0.0013	0.0000	0.0000	0.0000	0.0000	0.0020
K2O	2.5175	1.4172	1.7386	1.0982	2.1612	2.1079	2.3967	1.8331	0.4388
CaO	1.0222	0.4859	0.1183	0.1007	0.0777	0.4841	0.1428	2.1872	0.0440
TiO2	0.7389	0.9631	0.8080	0.7966	0.8972	0.4445	0.4714	0.6679	1.0124
V2O5	0.0233	0.0236	0.0372	0.0313	0.0366	0.0127	0.0118	0.0197	0.0210
Cr2O3	0.0097	0.0136	0.0132	0.0105	0.0141	0.0069	0.0069	0.0099	0.0076
MnO	0.0044	0.0035	0.0058	0.0065	0.0055	0.0074	0.0086	0.0203	0.0069
Fe2O3	1.4312	1.5033	1.4371	1.2392	1.6819	0.9404	1.0165	1.5177	0.7412
Co2O3	0.0028	0.0017	0.0020	0.0019	0.0025	0.0000	0.0007	0.0098	0.0045
NiO	0.0126	0.0116	0.0137	0.0125	0.0154	0.0111	0.0129	0.0362	0.0187
CuO	0.0117	0.0101	0.0106	0.0120	0.0142	0.0112	0.0105	0.0125	0.0112
ZnO	0.0018	0.0034	0.0045	0.0049	0.0186	0.0015	0.0028	0.0353	0.0075
Ga2O3	0.0030	0.0051	0.0037	0.0036	0.0053	0.0010	0.0010	0.0030	0.0020
As2O3	0.0000	0.0000	0.0000	0.0000	0.0015	0.0013	0.0000	0.0000	0.0005
Br	0.0000	0.0000	0.0005	0.0002	0.0005	0.0004	0.0000	0.0006	0.0002
Rb2O	0.0162	0.0107	0.0129	0.0078	0.0138	0.0098	0.0118	0.0109	0.0047
SrO	0.0063	0.0096	0.0095	0.0087	0.0089	0.0043	0.0061	0.0253	0.0044
Y2O3	0.0017	0.0016	0.0004	0.0000	0.0000	0.0015	0.0013	0.0023	0.0028
ZrO2	0.0267	0.0329	0.0227	0.0405	0.0238	0.0431	0.0386	0.0458	0.0574
Nb2O5	0.0019	0.0030	0.0016	0.0009	0.0000	0.0004	0.0007	0.0019	0.0032
MoO3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
BaO	0.0495	0.0444	0.0376	0.0309	0.0489	0.0573	0.0536	0.0448	0.0151
HfO2	0.0047	0.0091	0.0046	0.0050	0.0062	0.0070	0.0061	0.0083	0.0062
PbO	0.0033	0.0026	0.0052	0.0051	0.0000	0.0011	0.0014	0.0050	0.0020
ThO2	0.0015	0.0004	0.0004	0.0004	0.0000	0.0002	0.0000	0.0000	0.0000
Ра	0.0052	0.0037	0.0039	0.0025	0.0053	0.0035	0.0041	0.0040	0.0011
U3O8	0.0000	0.0000	0.0000	0.0006	0.0007	0.0000	0.0006	0.0000	0.0003

DED	56F	56G	56H	561	58A	59C	59D	59E	59F
	Mass %								
Na2O	0.2121	0.2765	0.1728	0.1625	1.0330	0.9690	0.6530	1.0676	1.1407
MgO	0.8503	1.2568	0.5582	1.2067	2.5423	1.6815	2.2396	2.4387	2.7648
Al2O3	19.9935	25.0234	15.4757	17.4468	16.5424	14.3728	22.1501	20.5416	20.9381
SiO2	73.3708	66.8035	79.3064	73.6340	70.5198	75.1154	65.5237	65.4279	64.2018
P2O5	0.0365	0.0356	0.0335	0.0581	0.1025	0.1342	0.0631	0.1670	0.1628
SO3	0.7929	1.0893	0.7437	0.3840	0.2105	0.0921	0.1173	0.0784	0.2673
Cl	0.0006	0.0000	0.0093	0.0000	0.0000	0.0051	0.0019	0.0000	0.0048
K2O	1.7091	2.3940	1.8405	3.6148	3.8026	2.9010	3.6238	3.6189	3.5693
CaO	0.1285	0.0867	0.0585	0.1443	0.4488	0.5953	0.2350	0.5081	0.3941
TiO2	0.7234	0.6342	0.6111	0.7269	0.5762	0.5907	0.7552	0.8107	0.7868
V2O5	0.0299	0.0316	0.0175	0.0247	0.0192	0.0215	0.0295	0.0404	0.0474
Cr2O3	0.0105	0.0106	0.0100	0.0104	0.0100	0.0090	0.0145	0.0123	0.0139
MnO	0.0082	0.0113	0.0087	0.0074	0.0218	0.0204	0.0307	0.0505	0.0452
Fe2O3	1.9538	2.1741	0.9954	2.3914	3.9827	3.2847	4.2923	4.9931	5.4452
Co2O3	0.0020	0.0039	0.0023	0.0027	0.0023	0.0059	0.0073	0.0032	0.0026
NiO	0.0159	0.0196	0.0127	0.0116	0.0150	0.0218	0.0258	0.0195	0.0207
CuO	0.0112	0.0122	0.0111	0.0118	0.0109	0.0105	0.0167	0.0159	0.0162
ZnO	0.0143	0.0308	0.0076	0.0086	0.0167	0.0211	0.0312	0.0226	0.0219
Ga2O3	0.0035	0.0045	0.0018	0.0039	0.0030	0.0031	0.0039	0.0043	0.0046
As2O3	0.0141	0.0023	0.0015	0.0009	0.0021	0.0028	0.0051	0.0000	0.0027
Br	0.0000	0.0004	0.0002	0.0008	0.0000	0.0005	0.0000	0.0003	0.0000
Rb2O	0.0108	0.0165	0.0094	0.0182	0.0229	0.0168	0.0180	0.0168	0.0176
SrO	0.0075	0.0066	0.0053	0.0083	0.0107	0.0135	0.0149	0.0195	0.0171
Y2O3	0.0019	0.0020	0.0028	0.0041	0.0009	0.0026	0.0039	0.0030	0.0014
ZrO2	0.0401	0.0190	0.0541	0.0289	0.0209	0.0367	0.0169	0.0163	0.0187
Nb2O5	0.0007	0.0002	0.0005	0.0012	0.0004	0.0004	0.0012	0.0010	0.0002
MoO3	0.0000	0.0000	0.0002	0.0000	0.0001	0.0003	0.0000	0.0000	0.0003
BaO	0.0365	0.0420	0.0395	0.0588	0.0513	0.0523	0.1136	0.1062	0.0827
HfO2	0.0012	0.0064	0.0059	0.0053	0.0056	0.0058	0.0060	0.0029	0.0023
PbO	0.0000	0.0000	0.0000	0.0009	0.0000	0.0000	0.0000	0.0056	0.0003
ThO2	0.0000	0.0005	0.0000	0.0000	0.0016	0.0003	0.0006	0.0010	0.0016
Ра	0.0043	0.0055	0.0032	0.0072	0.0087	0.0054	0.0052	0.0063	0.0063
U308	0.0000	0.0000	0.0006	0.0004	0.0000	0.0001	0.0000	0.0004	0.0006

DED	59G	59H	591	59J	59K	59L	60A	60B	61A
	Mass %								
Na2O	0.1593	0.3502	0.3131	0.3324	0.3783	0.3929	0.0798	0.1424	0.1681
MgO	0.0388	0.6450	0.7436	0.6591	0.7536	0.8966	0.1186	0.0821	0.5726
Al2O3	10.2142	20.7501	19.6052	18.6922	18.2119	19.6253	18.0078	18.0356	15.3471
SiO2	87.1626	71.9972	75.1235	75.8199	75.6446	74.2914	76.8796	77.6722	78.7698
P2O5	0.0209	0.0316	0.0383	0.0357	0.0354	0.0416	0.0304	0.0416	0.0319
SO3	0.0507	0.0810	0.0623	0.0701	0.1176	0.0999	0.1030	0.3457	0.0631
Cl	0.0009	0.0029	0.0032	0.0000	0.0041	0.0000	0.0000	0.0078	0.0010
K2O	0.3398	1.3584	1.6014	1.9224	2.1250	1.5784	1.2012	1.5114	2.1226
CaO	0.0891	0.0935	0.1487	0.1409	0.1581	0.3784	1.5755	0.1333	0.1453
TiO2	1.0974	0.9646	0.7782	0.8634	0.8585	0.8784	0.7285	0.8084	0.5338
V2O5	0.0197	0.0309	0.0216	0.0439	0.0352	0.0345	0.0305	0.0238	0.0167
Cr2O3	0.0106	0.0119	0.0131	0.0130	0.0125	0.0123	0.0110	0.0117	0.0107
MnO	0.0090	0.0595	0.0059	0.0083	0.0089	0.0201	0.0081	0.0085	0.0174
Fe2O3	0.6575	3.4987	1.3966	1.2153	1.4500	1.5916	1.1086	1.0477	2.0093
Co2O3	0.0019	0.0019	0.0008	0.0029	0.0049	0.0011	0.0000	0.0000	0.0011
NiO	0.0122	0.0123	0.0107	0.0169	0.0225	0.0127	0.0123	0.0128	0.0145
CuO	0.0100	0.0121	0.0128	0.0131	0.0148	0.0125	0.0110	0.0106	0.0102
ZnO	0.0026	0.0034	0.0036	0.0178	0.0214	0.0046	0.0024	0.0045	0.0116
Ga2O3	0.0013	0.0031	0.0037	0.0030	0.0042	0.0032	0.0029	0.0023	0.0025
As2O3	0.0010	0.0019	0.0012	0.0000	0.0022	0.0010	0.0026	0.0013	0.0000
Br	0.0002	0.0005	0.0005	0.0002	0.0006	0.0006	0.0009	0.0013	0.0010
Rb2O	0.0039	0.0094	0.0093	0.0089	0.0101	0.0090	0.0045	0.0070	0.0111
SrO	0.0044	0.0078	0.0105	0.0099	0.0132	0.0097	0.0129	0.0067	0.0102
Y2O3	0.0018	0.0006	0.0012	0.0013	0.0014	0.0011	0.0009	0.0018	0.0001
ZrO2	0.0615	0.0347	0.0335	0.0361	0.0342	0.0341	0.0350	0.0323	0.0193
Nb2O5	0.0019	0.0011	0.0002	0.0007	0.0007	0.0010	0.0003	0.0010	0.0000
MoO3	0.0001	0.0000	0.0000	0.0000	0.0000	0.0003	0.0000	0.0003	0.0004
BaO	0.0184	0.0273	0.0517	0.0564	0.0684	0.0588	0.0272	0.0374	0.0976
HfO2	0.0066	0.0052	0.0019	0.0078	0.0039	0.0040	0.0034	0.0056	0.0045
PbO	0.0009	0.0000	0.0000	0.0044	0.0000	0.0018	0.0000	0.0000	0.0030
ThO2	0.0000	0.0007	0.0006	0.0005	0.0002	0.0010	0.0000	0.0006	0.0000
Ра	0.0006	0.0019	0.0031	0.0034	0.0033	0.0021	0.0011	0.0019	0.0035
U308	0.0002	0.0006	0.0000	0.0001	0.0003	0.0000	0.0000	0.0004	0.0000

RHAME			
BED	61B	61C	MEAN
	Mass %	Mass %	Mass %
Na2O	0.3925	0.2527	0.1862
MgO	1.2683	0.4645	0.8688
AI2O3	22.7642	15.5834	17.6212
SiO2	66.6336	75.2783	75.6237
P2O5	0.0538	0.0611	0.0406
SO3	0.2831	0.0654	0.3867
Cl	0.0017	0.0000	0.0019
К2О	2.9340	1.4026	2.1010
CaO	1.2669	0.0465	0.3987
TiO2	0.7133	0.8643	0.7649
V2O5	0.0321	0.0133	0.0246
Cr2O3	0.0132	0.0172	0.0103
MnO	0.0237	0.1181	0.0121
Fe2O3	3.3280	5.6376	1.7942
Co2O3	0.0084	0.0077	0.0020
NiO	0.0423	0.0150	0.0150
CuO	0.0175	0.0124	0.0121
ZnO	0.0327	0.0086	0.0090
Ga2O3	0.0036	0.0026	0.0033
As2O3	0.0072	0.0014	0.0015
Br	0.0011	0.0000	0.0004
Rb2O	0.0182	0.0077	0.0132
SrO	0.0323	0.0069	0.0087
Y2O3	0.0137	0.0019	0.0020
ZrO2	0.0232	0.0585	0.0363
Nb2O5	0.0003	0.0000	0.0013
MoO3	0.0000	0.0003	0.0001
BaO	0.0805	0.0626	0.0464
HfO2	0.0028	0.0064	0.0052
PbO	0.0000	0.0011	0.0030
ThO2	0.0018	0.0002	0.0007
Ра	0.0060	0.0017	0.0041
U3O8	0.0000	0.0000	0.0007

Upper RHAME									
BED	1a	2a	10a	10b	11a	11b	13a	14a	26A
	Mass %								
Na2O	0.0510	0.0893	0.3250	0.2671	0.1046	0.1240	0.0937	0.1824	0.0552
MgO	0.3003	0.7057	1.0183	1.3236	0.7045	0.8404	0.9360	0.8807	0.5779
Al2O3	17.1156	19.8113	12.7967	17.4977	15.3633	18.7389	14.6373	13.2731	9.8576
SiO2	80.2154	74.5500	80.2840	74.2844	78.6370	75.6081	78.5098	80.6660	86.1617
P2O5	0.0251	0.0299	0.0271	0.0314	0.0218	0.0293	0.0277	0.0237	0.0304
SO3	0.0410	0.1020	0.5093	0.3963	0.0792	0.0958	0.0661	0.1495	0.0737
Cl	0.0039	0.0054	0.0000	0.0003	0.0000	0.0043	0.0003	0.0027	0.0000
K2O	0.8500	2.4707	2.4116	2.9317	1.9475	1.8046	2.6103	1.7257	0.9907
CaO	0.1532	0.0909	0.0451	0.0609	0.1726	0.2109	0.1100	0.1238	0.0585
TiO2	0.5498	0.6598	0.6991	0.6069	0.7657	0.7281	0.9640	0.9795	0.8831
V2O5	0.0207	0.0216	0.0205	0.0201	0.0140	0.0146	0.0249	0.0225	0.0232
Cr2O3	0.0096	0.0096	0.0084	0.0107	0.0094	0.0095	0.0095	0.0090	0.0077
MnO	0.0042	0.0035	0.0053	0.0072	0.0059	0.0048	0.0031	0.0056	0.0030
Fe2O3	0.5539	1.2958	1.7103	2.4113	2.0209	1.6265	1.8466	1.8060	1.1219
Co2O3	0.0012	0.0014	0.0007	0.0014	0.0003	0.0008	0.0003	0.0014	0.0026
NiO	0.0153	0.0137	0.0137	0.0140	0.0119	0.0140	0.0124	0.0117	0.0127
CuO	0.0111	0.0115	0.0138	0.0119	0.0108	0.0153	0.0128	0.0108	0.0109
ZnO	0.0101	0.0061	0.0058	0.0072	0.0031	0.0047	0.0045	0.0036	0.0022
Ga2O3	0.0025	0.0044	0.0023	0.0026	0.0046	0.0042	0.0069	0.0037	0.0040
As2O3	0.0000	0.0025	0.0015	0.0000	0.0000	0.0000	0.0000	0.0028	0.0000
Br	0.0002	0.0000	0.0003	0.0000	0.0000	0.0007	0.0002	0.0002	0.0000
Rb2O	0.0049	0.0157	0.0205	0.0223	0.0151	0.0183	0.0198	0.0202	0.0080
SrO	0.0032	0.0047	0.0057	0.0064	0.0059	0.0090	0.0061	0.0057	0.0045
Y2O3	0.0000	0.0018	0.0017	0.0013	0.0017	0.0012	0.0015	0.0018	0.0032
ZrO2	0.0162	0.0297	0.0283	0.0238	0.0394	0.0313	0.0354	0.0310	0.0613
Nb2O5	0.0002	0.0016	0.0010	0.0010	0.0019	0.0016	0.0030	0.0033	0.0017
MoO3	0.0000	0.0000	0.0000	0.0000	0.0006	0.0000	0.0000	0.0000	0.0000
BaO	0.0353	0.0513	0.0325	0.0409	0.0424	0.0415	0.0396	0.0408	0.0318
HfO2	0.0028	0.0046	0.0022	0.0053	0.0042	0.0066	0.0061	0.0052	0.0080
PbO	0.0025	0.0000	0.0000	0.0039	0.0049	0.0042	0.0044	0.0000	0.0021
ThO2	0.0000	0.0000	0.0004	0.0001	0.0007	0.0006	0.0000	0.0008	0.0000
Ра	0.0008	0.0054	0.0083	0.0083	0.0055	0.0056	0.0071	0.0068	0.0023
U3O8	0.0000	0.0000	0.0006	0.0000	0.0006	0.0006	0.0006	0.0000	0.0001

RHAME									
BED	26B	28A	28B	28C	29A	29B	34A	34B	35A
	Mass %								
Na2O	0.0803	0.0275	0.0504	0.0499	0.0378	0.0634	0.0126	0.0457	0.0283
MgO	1.2576	0.3007	0.3724	0.3044	0.0455	0.5776	0.2875	0.5109	0.5154
Al2O3	19.6959	6.3784	10.6924	11.4708	7.3415	15.3389	6.0514	20.4350	20.7299
SiO2	65.6507	90.5982	85.9299	85.0575	90.4257	79.6225	90.9118	75.0752	76.2109
P2O5	0.0379	0.0230	0.0248	0.0241	0.0198	0.0268	0.0221	0.0286	0.0318
SO3	4.8124	0.0557	0.0687	0.0823	0.0642	0.0661	0.0510	0.0415	0.1347
Cl	0.0000	0.0000	0.0073	0.0000	0.0000	0.0044	0.0000	0.0017	0.0001
K2O	2.1295	0.4032	0.6126	1.4380	0.4189	1.8528	0.5389	1.7134	0.6870
CaO	3.1429	0.1630	0.2199	0.1116	0.0446	0.0973	0.1132	0.2092	0.1511
TiO2	0.7723	1.1303	0.9220	0.3974	0.8543	0.9958	1.1505	0.6985	0.5377
V2O5	0.0278	0.0149	0.0184	0.0113	0.0085	0.0231	0.0192	0.0128	0.0237
Cr2O3	0.0103	0.0071	0.0069	0.0072	0.0066	0.0086	0.0060	0.0090	0.0114
MnO	0.0047	0.0023	0.0044	0.0068	0.0025	0.0061	0.0029	0.0041	0.0030
Fe2O3	2.1443	0.7599	0.9428	0.9179	0.5716	1.1796	0.6775	1.0822	0.8078
Co2O3	0.0009	0.0013	0.0008	0.0004	0.0004	0.0006	0.0004	0.0002	0.0014
NiO	0.0140	0.0115	0.0117	0.0113	0.0115	0.0115	0.0113	0.0110	0.0173
CuO	0.0138	0.0105	0.0113	0.0091	0.0100	0.0098	0.0140	0.0108	0.0121
ZnO	0.0076	0.0015	0.0019	0.0018	0.0016	0.0025	0.0024	0.0020	0.0111
Ga2O3	0.0060	0.0027	0.0018	0.0014	0.0019	0.0049	0.0021	0.0033	0.0013
As2O3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0003	0.0001	0.0000	0.0005
Br	0.0000	0.0001	0.0002	0.0002	0.0000	0.0000	0.0010	0.0008	0.0003
Rb2O	0.0173	0.0025	0.0045	0.0068	0.0033	0.0118	0.0055	0.0116	0.0050
SrO	0.0309	0.0035	0.0034	0.0036	0.0018	0.0068	0.0047	0.0074	0.0058
Y2O3	0.0006	0.0048	0.0028	0.0017	0.0031	0.0024	0.0023	0.0016	0.0009
ZrO2	0.0225	0.0580	0.0568	0.0384	0.0876	0.0454	0.0770	0.0393	0.0432
Nb2O5	0.0015	0.0026	0.0048	0.0003	0.0057	0.0022	0.0029	0.0010	0.0008
MoO3	0.0000	0.0001	0.0000	0.0002	0.0000	0.0003	0.0000	0.0002	0.0000
BaO	0.1004	0.0127	0.0170	0.0346	0.0110	0.0282	0.0209	0.0315	0.0194
HfO2	0.0054	0.0093	0.0047	0.0054	0.0065	0.0044	0.0080	0.0050	0.0055
PbO	0.0055	0.0089	0.0046	0.0026	0.0124	0.0008	0.0009	0.0033	0.0008
ThO2	0.0009	0.0037	0.0003	0.0006	0.0015	0.0004	0.0000	0.0000	0.0003
Ра	0.0055	0.0008	0.0000	0.0024	0.0000	0.0044	0.0012	0.0030	0.0011
U308	0.0006	0.0012	0.0005	0.0000	0.0002	0.0003	0.0007	0.0002	0.0004

Upper

RHAME									
DEU	36A	37A	38A	38B	41A	44A	44B	45A	45B
	Mass %								
Na2O	0.0545	0.0813	0.0529	0.0816	0.1066	0.0528	0.1084	0.2962	0.4195
MgO	0.1135	0.8317	0.7325	0.7703	1.2426	0.9077	0.9225	0.8560	1.0517
Al2O3	15.2038	22.9985	16.2905	20.3996	20.3957	11.8482	15.4054	25.4888	27.1930
SiO2	80.5065	68.7304	78.2554	73.9224	71.7853	82.2429	75.6203	66.9435	65.4716
P2O5	0.0318	0.0323	0.0261	0.0297	0.0387	0.0262	0.0260	0.0304	0.0431
SO3	0.0855	1.9209	0.0627	0.1841	0.1988	0.1604	2.0499	0.8566	0.3092
Cl	0.0000	0.0000	0.0015	0.0000	0.0004	0.0020	0.0000	0.0000	0.0000
K2O	2.0064	1.5773	1.9012	1.9659	2.8489	1.3407	2.2159	1.8882	2.9412
CaO	0.0954	1.2906	0.2325	0.2706	0.1965	1.0922	1.2781	0.4634	0.0899
TiO2	0.6719	0.8744	1.0860	0.8876	0.8760	1.1920	0.9318	0.9345	0.7483
V2O5	0.0159	0.0276	0.0271	0.0274	0.0205	0.0182	0.0210	0.0472	0.0397
Cr2O3	0.0094	0.0106	0.0085	0.0111	0.0124	0.0070	0.0077	0.0140	0.0144
MnO	0.0059	0.0139	0.0091	0.0052	0.0074	0.0041	0.0045	0.0105	0.0079
Fe2O3	1.0404	1.4610	1.1681	1.3161	2.0414	0.9604	1.2249	1.9964	1.4439
Co2O3	0.0001	0.0040	0.0000	0.0000	0.0016	0.0032	0.0060	0.0044	0.0023
NiO	0.0131	0.0204	0.0143	0.0118	0.0136	0.0138	0.0258	0.0274	0.0220
CuO	0.0105	0.0106	0.0096	0.0099	0.0135	0.0101	0.0108	0.0112	0.0134
ZnO	0.0060	0.0092	0.0029	0.0025	0.0068	0.0018	0.0187	0.0189	0.0226
Ga2O3	0.0025	0.0058	0.0059	0.0034	0.0071	0.0022	0.0041	0.0025	0.0056
As2O3	0.0031	0.0015	0.0012	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Br	0.0005	0.0007	0.0000	0.0006	0.0004	0.0005	0.0004	0.0000	0.0004
Rb2O	0.0127	0.0108	0.0130	0.0139	0.0217	0.0097	0.0141	0.0107	0.0158
SrO	0.0033	0.0136	0.0079	0.0109	0.0114	0.0074	0.0068	0.0113	0.0117
Y2O3	0.0025	0.0019	0.0028	0.0010	0.0013	0.0031	0.0038	0.0005	0.0001
ZrO2	0.0563	0.0437	0.0351	0.0345	0.0267	0.0541	0.0435	0.0195	0.0157
Nb2O5	0.0011	0.0022	0.0028	0.0012	0.0021	0.0029	0.0019	0.0015	0.0008
MoO3	0.0004	0.0000	0.0003	0.0001	0.0000	0.0001	0.0000	0.0000	0.0000
BaO	0.0343	0.0130	0.0417	0.0270	0.1081	0.0209	0.0333	0.0504	0.0978
HfO2	0.0072	0.0072	0.0035	0.0045	0.0024	0.0087	0.0069	0.0058	0.0061
PbO	0.0000	0.0000	0.0000	0.0023	0.0039	0.0026	0.0028	0.0070	0.0059
ThO2	0.0007	0.0015	0.0004	0.0005	0.0000	0.0008	0.0000	0.0001	0.0000
Ра	0.0041	0.0034	0.0044	0.0037	0.0082	0.0033	0.0046	0.0031	0.0064
U3O8	0.0007	0.0000	0.0001	0.0006	0.0000	0.0000	0.0001	0.0000	0.0000

Upper

Upper RHAME									
RED	47A	48A	48B	49A	49B	50A	51A	51B	53A
	Mass %								
Na2O	0.1905	0.2661	0.3740	0.0705	0.0260	0.0791	0.0996	0.1182	0.0591
MgO	1.0060	0.5218	0.8984	0.7782	0.7294	0.7795	0.1566	0.8364	0.4955
Al2O3	12.9309	14.6881	17.6820	15.0177	15.0868	14.7104	22.9416	26.0536	13.0187
SiO2	79.1024	79.8619	74.8734	80.3419	79.6953	79.6216	71.4102	68.5613	82.1618
P2O5	0.0289	0.0258	0.0378	0.0267	0.0256	0.0245	0.0353	0.0385	0.0234
SO3	1.0586	0.8280	0.4986	0.0461	0.1664	0.2847	0.7937	0.0897	0.0829
Cl	0.0037	0.0000	0.0003	0.0068	0.0021	0.0117	0.0029	0.0103	0.0000
K2O	1.7865	1.3649	2.4355	1.5917	1.8665	1.6094	1.4172	1.7386	2.1079
CaO	0.8532	0.5270	0.1291	0.3118	0.4265	0.8148	0.4859	0.1183	0.4841
TiO2	0.6679	0.5648	0.7461	0.5798	0.6079	0.7246	0.9631	0.8080	0.4445
V2O5	0.0212	0.0172	0.0260	0.0063	0.0219	0.0189	0.0236	0.0372	0.0127
Cr2O3	0.0086	0.0082	0.0102	0.0083	0.0085	0.0078	0.0136	0.0132	0.0069
MnO	0.0069	0.0066	0.0077	0.0080	0.0061	0.0117	0.0035	0.0058	0.0074
Fe2O3	2.1830	1.2077	2.1250	1.0738	1.1818	1.1801	1.5033	1.4371	0.9404
Co2O3	0.0027	0.0000	0.0010	0.0001	0.0000	0.0018	0.0017	0.0020	0.0000
NiO	0.0123	0.0119	0.0116	0.0107	0.0115	0.0120	0.0116	0.0137	0.0111
CuO	0.0104	0.0111	0.0123	0.0099	0.0115	0.0100	0.0101	0.0106	0.0112
ZnO	0.0031	0.0018	0.0070	0.0021	0.0017	0.0016	0.0034	0.0045	0.0015
Ga2O3	0.0029	0.0023	0.0016	0.0023	0.0025	0.0039	0.0051	0.0037	0.0010
As2O3	0.0025	0.0029	0.0054	0.0007	0.0000	0.0000	0.0000	0.0000	0.0013
Br	0.0009	0.0008	0.0003	0.0003	0.0002	0.0006	0.0000	0.0005	0.0004
Rb2O	0.0124	0.0072	0.0124	0.0103	0.0116	0.0113	0.0107	0.0129	0.0098
SrO	0.0087	0.0035	0.0089	0.0051	0.0046	0.0063	0.0096	0.0095	0.0043
Y2O3	0.0022	0.0010	0.0016	0.0017	0.0014	0.0014	0.0016	0.0004	0.0015
ZrO2	0.0504	0.0363	0.0438	0.0457	0.0496	0.0305	0.0329	0.0227	0.0431
Nb2O5	0.0013	0.0005	0.0013	0.0010	0.0013	0.0016	0.0030	0.0016	0.0004
MoO3	0.0004	0.0005	0.0005	0.0001	0.0004	0.0011	0.0000	0.0000	0.0000
BaO	0.0296	0.0219	0.0300	0.0323	0.0423	0.0282	0.0444	0.0376	0.0573
HfO2	0.0075	0.0069	0.0026	0.0057	0.0034	0.0046	0.0091	0.0046	0.0070
PbO	0.0000	0.0000	0.0109	0.0000	0.0032	0.0024	0.0026	0.0052	0.0011
ThO2	0.0003	0.0006	0.0000	0.0005	0.0006	0.0000	0.0004	0.0004	0.0002
Ра	0.0036	0.0025	0.0005	0.0038	0.0034	0.0037	0.0037	0.0039	0.0035
U3O8	0.0005	0.0002	0.0042	0.0001	0.0000	0.0002	0.0000	0.0000	0.0000

Upper RHAME								
BED	53B	55A	56E	56F	56G	59C	59D	Mean
	Mass %	Mass % N	lass %	Mass %				
Na2O	0.0879	0.0288	0.2643	0.2121	0.2765	0.9690	0.6530	0.1562
MgO	0.5558	0.7289	0.5113	0.8503	1.2568	1.6815	2.2396	0.7654
Al2O3	12.6107	17.5623	10.3709	19.9935	25.0234	14.3728	22.1501	16.4340
SiO2	82.4454	72.2091	85.4974	73.3708	66.8035	75.1154	65.5237	77.4063
P2O5	0.0225	0.0298	0.0256	0.0365	0.0356	0.1342	0.0631	0.0322
SO3	0.0708	2.9396	0.9148	0.7929	1.0893	0.0921	0.1173	0.5252
Cl	0.0000	0.0000	0.0020	0.0006	0.0000	0.0051	0.0019	0.0019
K2O	2.3967	1.8331	0.4388	1.7091	2.3940	2.9010	3.6238	1.8009
CaO	0.1428	2.1872	0.0440	0.1285	0.0867	0.5953	0.2350	0.4153
TiO2	0.4714	0.6679	1.0124	0.7234	0.6342	0.5907	0.7552	0.7781
V2O5	0.0118	0.0197	0.0210	0.0299	0.0316	0.0215	0.0295	0.0218
Cr2O3	0.0069	0.0099	0.0076	0.0105	0.0106	0.0090	0.0145	0.0094
MnO	0.0086	0.0203	0.0069	0.0082	0.0113	0.0204	0.0307	0.0074
Fe2O3	1.0165	1.5177	0.7412	1.9538	2.1741	3.2847	4.2923	1.4870
Co2O3	0.0007	0.0098	0.0045	0.0020	0.0039	0.0059	0.0073	0.0019
NiO	0.0129	0.0362	0.0187	0.0159	0.0196	0.0218	0.0258	0.0151
CuO	0.0105	0.0125	0.0112	0.0112	0.0122	0.0105	0.0167	0.0114
ZnO	0.0028	0.0353	0.0075	0.0143	0.0308	0.0211	0.0312	0.0079
Ga2O3	0.0010	0.0030	0.0020	0.0035	0.0045	0.0031	0.0039	0.0034
As2O3	0.0000	0.0000	0.0005	0.0141	0.0023	0.0028	0.0051	0.0012
Br	0.0000	0.0006	0.0002	0.0000	0.0004	0.0005	0.0000	0.0003
Rb2O	0.0118	0.0109	0.0047	0.0108	0.0165	0.0168	0.0180	0.0122
SrO	0.0061	0.0253	0.0044	0.0075	0.0066	0.0135	0.0149	0.0080
Y2O3	0.0013	0.0023	0.0028	0.0019	0.0020	0.0026	0.0039	0.0019
ZrO2	0.0386	0.0458	0.0574	0.0401	0.0190	0.0367	0.0169	0.0396
Nb2O5	0.0007	0.0019	0.0032	0.0007	0.0002	0.0004	0.0012	0.0017
MoO3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0003	0.0000	0.0001
BaO	0.0536	0.0448	0.0151	0.0365	0.0420	0.0523	0.1136	0.0405
HfO2	0.0061	0.0083	0.0062	0.0012	0.0064	0.0058	0.0060	0.0056
PbO	0.0014	0.0050	0.0020	0.0159	0.0000	0.0000	0.0000	0.0032
ThO2	0.0000	0.0000	0.0000	0.0000	0.0005	0.0074	0.0006	0.0006
Ра	0.0041	0.0040	0.0011	0.0000	0.0055	0.0003	0.0052	0.0037
U308	0.0006	0.0000	0.0003	0.0043	0.0000	0.0054	0.0000	0.0006

Middle RHAME									
DED	13b	13c	13d	14b	28D	29C	34C	34D	34E
	Mass %								
Na2O	0.3508	0.3071	0.2189	0.1194	0.1224	0.0751	0.0192	0.0698	0.0927
MgO	1.7884	0.4629	1.1341	0.1234	1.0581	0.9831	0.3498	0.8746	0.7315
Al2O3	16.7577	10.2219	17.1619	14.5336	14.6838	22.6883	15.0006	24.0336	22.7280
SiO2	71.7925	85.5133	72.8351	81.6515	76.8079	70.2812	81.9251	69.1228	70.6790
P2O5	0.1480	0.0232	0.0556	0.0246	0.0773	0.0282	0.0253	0.0339	0.0349
SO3	0.3435	0.2691	0.1507	0.0946	0.6849	0.0612	0.0627	0.0491	0.1342
Cl	0.0034	0.0000	0.0000	0.0033	0.0003	0.0004	0.0077	0.0126	0.0000
K2O	3.6418	1.1161	3.3637	1.3809	2.8926	2.9744	1.2310	2.9399	2.1445
CaO	0.2475	0.1164	0.1055	0.0810	0.5224	0.1348	0.1175	0.2853	0.6154
TiO2	0.6771	0.8421	0.6842	0.6411	0.6454	0.7481	0.4440	0.8305	1.0536
V2O5	0.0245	0.0130	0.0212	0.0205	0.0272	0.0273	0.0134	0.0313	0.0444
Cr2O3	0.0097	0.0085	0.0101	0.0081	0.0097	0.0112	0.0071	0.0112	0.0135
MnO	0.0224	0.0051	0.0439	0.0047	0.0078	0.0057	0.0044	0.0060	0.0040
Fe2O3	3.9778	0.9497	4.0393	1.1843	2.2711	1.8424	0.7009	1.5427	1.5594
Co2O3	0.0007	0.0016	0.0000	0.0013	0.0000	0.0004	0.0000	0.0017	0.0000
NiO	0.0153	0.0136	0.0141	0.0112	0.0130	0.0124	0.0122	0.0122	0.0132
CuO	0.0145	0.0107	0.0139	0.0104	0.0137	0.0097	0.0101	0.0107	0.0131
ZnO	0.0164	0.0060	0.0079	0.0028	0.0089	0.0030	0.0005	0.0027	0.0053
Ga2O3	0.0031	0.0011	0.0029	0.0020	0.0000	0.0032	0.0022	0.0042	0.0058
As2O3	0.0011	0.0000	0.0052	0.0006	0.0003	0.0006	0.0009	0.0000	0.0000
Br	0.0001	0.0004	0.0000	0.0005	0.0002	0.0004	0.0006	0.0000	0.0006
Rb2O	0.0208	0.0121	0.0202	0.0104	0.0160	0.0203	0.0072	0.0199	0.0139
SrO	0.0134	0.0044	0.0076	0.0035	0.0103	0.0079	0.0035	0.0095	0.0144
Y2O3	0.0023	0.0036	0.0025	0.0024	0.0035	0.0014	0.0011	0.0013	0.0019
ZrO2	0.0313	0.0522	0.0311	0.0474	0.0445	0.0269	0.0278	0.0254	0.0299
Nb2O5	0.0014	0.0023	0.0013	0.0012	0.0014	0.0007	0.0002	0.0017	0.0007
MoO3	0.0000	0.0000	0.0000	0.0008	0.0000	0.0000	0.0000	0.0000	0.0000
BaO	0.0775	0.0301	0.0571	0.0244	0.0572	0.0375	0.0148	0.0531	0.0517
HfO2	0.0021	0.0042	0.0051	0.0061	0.0082	0.0053	0.0065	0.0020	0.0046
PbO	0.0070	0.0039	0.0000	0.0007	0.0036	0.0005	0.0006	0.0034	0.0051
ThO2	0.0011	0.0008	0.0000	0.0000	0.0008	0.0003	0.0000	0.0012	0.0000
Ра	0.0066	0.0046	0.0069	0.0033	0.0066	0.0077	0.0031	0.0074	0.0047
U3O8	0.0002	0.0000	0.0000	0.0000	0.0009	0.0004	0.0000	0.0004	0.0000

Middle RHAME BED									
	34F	35B	35C	35D	36B	37B	38C	38D	41B
	Mass %								
Na2O	0.1010	0.0693	0.0587	0.0816	0.0742	0.0652	0.0613	0.0487	0.0650
MgO	0.6161	1.1085	0.9512	0.9446	0.7175	0.7374	0.1073	0.4672	0.1030
Al2O3	23.3688	19.2402	21.5457	21.8916	17.0646	22.1069	18.3423	15.2425	17.4331
SiO2	70.6040	73.9669	70.9788	71.2100	76.6442	72.3727	78.2775	80.3058	78.1240
P2O5	0.0309	0.0416	0.0309	0.0352	0.0355	0.0321	0.0273	0.0248	0.0300
SO3	0.1143	0.7021	1.3885	0.0837	0.3354	0.1127	0.0812	0.1995	0.0977
Cl	0.0018	0.0023	0.0000	0.0000	0.0061	0.0000	0.0000	0.0015	0.0000
K2O	1.9534	1.5670	1.9908	3.2300	2.5693	2.0163	1.3793	1.8509	1.9819
CaO	0.5513	0.4874	0.9753	0.1095	0.0673	0.1492	0.0735	0.1000	0.0895
TiO2	0.9876	0.8961	0.6422	0.6669	0.7135	0.8254	0.5962	0.5512	0.6317
V2O5	0.0518	0.0402	0.0113	0.0213	0.0220	0.0312	0.0211	0.0192	0.0154
Cr2O3	0.0131	0.0119	0.0108	0.0097	0.0084	0.0094	0.0086	0.0092	0.0085
MnO	0.0054	0.0445	0.0044	0.0050	0.0049	0.0066	0.0038	0.0036	0.0067
Fe2O3	1.4202	1.5873	1.2833	1.5379	1.5809	1.3674	0.8911	1.0393	1.2480
Co2O3	0.0001	0.0139	0.0007	0.0011	0.0017	0.0018	0.0007	0.0002	0.0013
NiO	0.0149	0.0396	0.0131	0.0122	0.0118	0.0132	0.0114	0.0108	0.0121
CuO	0.0146	0.0124	0.0133	0.0119	0.0119	0.0110	0.0108	0.0114	0.0112
ZnO	0.0081	0.0396	0.0048	0.0076	0.0097	0.0095	0.0022	0.0019	0.0119
Ga2O3	0.0045	0.0051	0.0037	0.0032	0.0029	0.0049	0.0034	0.0037	0.0025
As2O3	0.0035	0.0000	0.0037	0.0007	0.0044	0.0000	0.0000	0.0000	0.0017
Br	0.0008	0.0000	0.0006	0.0007	0.0001	0.0005	0.0000	0.0004	0.0004
Rb2O	0.0125	0.0125	0.0133	0.0194	0.0149	0.0140	0.0089	0.0097	0.0124
SrO	0.0128	0.0126	0.0069	0.0049	0.0060	0.0097	0.0037	0.0052	0.0061
Y2O3	0.0016	0.0043	0.0027	0.0022	0.0042	0.0017	0.0014	0.0016	0.0017
ZrO2	0.0316	0.0359	0.0273	0.0326	0.0438	0.0385	0.0524	0.0439	0.0453
Nb2O5	0.0018	0.0019	0.0012	0.0018	0.0011	0.0011	0.0008	0.0007	0.0011
MoO3	0.0001	0.0003	0.0008	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000
BaO	0.0641	0.0435	0.0257	0.0602	0.0339	0.0464	0.0242	0.0306	0.0481
HfO2	0.0047	0.0026	0.0065	0.0059	0.0051	0.0043	0.0061	0.0065	0.0045
PbO	0.0000	0.0046	0.0000	0.0018	0.0000	0.0057	0.0003	0.0058	0.0000
ThO2	0.0000	0.0020	0.0000	0.0000	0.0000	0.0007	0.0002	0.0000	0.0007
Ра	0.0044	0.0037	0.0038	0.0063	0.0047	0.0044	0.0027	0.0035	0.0044
U3O8	0.0002	0.0002	0.0000	0.0005	0.0000	0.0001	0.0003	0.0006	0.0001

Middle RHAME BED									
	44C	45C	47B	47C	47D	50B	51C	51D	56H
	Mass %	Mass %	Mass %	Mass % N	lass %	Mass %	Mass %	Mass %	Mass %
Na2O	0.1351	0.2550	0.1068	0.1573	0.1601	0.0771	0.0805	0.0952	0.1728
MgO	1.3010	0.9954	1.1625	0.9118	1.4534	0.9774	0.1179	0.8272	0.5582
Al2O3	20.4990	21.1837	17.1160	13.4750	19.7488	20.5447	20.9506	25.4184	15.4757
SiO2	70.9962	71.1094	72.9997	79.1134	69.7441	71.0759	75.2744	68.4559	79.3064
P2O5	0.0279	0.0497	0.0424	0.0264	0.0305	0.0290	0.0388	0.0407	0.0335
SO3	0.3451	0.2416	1.2035	0.2391	0.1869	1.3939	0.1160	0.1228	0.7437
Cl	0.0000	0.0001	0.0059	0.0000	0.0000	0.0059	0.0013	0.0000	0.0093
К2О	3.2839	3.1091	3.6581	3.3439	4.4458	2.5175	1.0982	2.1612	1.8405
CaO	0.1511	0.0805	0.7811	0.0356	0.0780	1.0222	0.1007	0.0777	0.0585
TiO2	0.8374	0.8364	0.6783	0.7045	0.6090	0.7389	0.7966	0.8972	0.6111
V2O5	0.0349	0.0266	0.0160	0.0146	0.0259	0.0233	0.0313	0.0366	0.0175
Cr2O3	0.0106	0.0138	0.0087	0.0070	0.0095	0.0097	0.0105	0.0141	0.0100
MnO	0.0117	0.0068	0.0066	0.0056	0.0072	0.0044	0.0065	0.0055	0.0087
Fe2O3	2.1817	1.9094	2.0175	1.7988	3.2456	1.4312	1.2392	1.6819	0.9954
Co2O3	0.0048	0.0002	0.0032	0.0020	0.0032	0.0028	0.0019	0.0025	0.0023
NiO	0.0166	0.0134	0.0128	0.0116	0.0137	0.0126	0.0125	0.0154	0.0127
CuO	0.0120	0.0134	0.0138	0.0104	0.0166	0.0117	0.0120	0.0142	0.0111
ZnO	0.0196	0.0082	0.0071	0.0048	0.0129	0.0018	0.0049	0.0186	0.0076
Ga2O3	0.0060	0.0049	0.0021	0.0019	0.0045	0.0030	0.0036	0.0053	0.0018
As2O3	0.0009	0.0077	0.0000	0.0000	0.0166	0.0000	0.0000	0.0015	0.0015
Br	0.0006	0.0000	0.0005	0.0001	0.0005	0.0000	0.0002	0.0005	0.0002
Rb2O	0.0206	0.0181	0.0190	0.0239	0.0254	0.0162	0.0078	0.0138	0.0094
SrO	0.0061	0.0107	0.0108	0.0094	0.0079	0.0063	0.0087	0.0089	0.0053
Y2O3	0.0016	0.0010	0.0031	0.0010	0.0017	0.0017	0.0000	0.0000	0.0028
ZrO2	0.0277	0.0188	0.0290	0.0253	0.0187	0.0267	0.0405	0.0238	0.0541
Nb2O5	0.0018	0.0018	0.0018	0.0014	0.0011	0.0019	0.0009	0.0000	0.0005
MoO3	0.0003	0.0000	0.0000	0.0002	0.0000	0.0000	0.0000	0.0000	0.0002
BaO	0.0480	0.0731	0.0754	0.0580	0.0830	0.0495	0.0309	0.0489	0.0395
HfO2	0.0091	0.0040	0.0043	0.0028	0.0044	0.0047	0.0050	0.0062	0.0059
PbO	0.0008	0.0000	0.0057	0.0043	0.0164	0.0033	0.0051	0.0000	0.0000
ThO2	0.0004	0.0000	0.0012	0.0002	0.0169	0.0015	0.0004	0.0000	0.0000
Ра	0.0075	0.0071	0.0067	0.0093	0.0013	0.0052	0.0025	0.0053	0.0032
U3O8	0.0000	0.0001	0.0004	0.0004	0.0104	0.0000	0.0006	0.0007	0.0006

Middle RHAME								
DEU	59E	59F	59G	59H	591	59J	59L	Mean
	Mass %							
Na2O	1.0676	1.1407	0.1593	0.3502	0.3131	0.3324	0.3929	0.2058
MgO	2.4387	2.7648	0.0388	0.6450	0.7436	0.6591	0.8966	0.8750
Al2O3	20.5416	20.9381	10.2142	20.7501	19.6052	18.6922	19.6253	18.7889
SiO2	65.4279	64.2018	87.1626	71.9972	75.1235	75.8199	74.2914	74.2704
P2O5	0.1670	0.1628	0.0209	0.0316	0.0383	0.0357	0.0416	0.0458
SO3	0.0784	0.2673	0.0507	0.0810	0.0623	0.0701	0.0999	0.3020
Cl	0.0000	0.0048	0.0009	0.0029	0.0032	0.0000	0.0000	0.0022
K2O	3.6189	3.5693	0.3398	1.3584	1.6014	1.9224	1.5784	2.3433
CaO	0.5081	0.3941	0.0891	0.0935	0.1487	0.1409	0.3784	0.2637
TiO2	0.8107	0.7868	1.0974	0.9646	0.7782	0.8634	0.8784	0.7637
V2O5	0.0404	0.0474	0.0197	0.0309	0.0216	0.0439	0.0345	0.0271
Cr2O3	0.0123	0.0139	0.0106	0.0119	0.0131	0.0130	0.0123	0.0106
MnO	0.0505	0.0452	0.0090	0.0595	0.0059	0.0083	0.0201	0.0132
Fe2O3	4.9931	5.4452	0.6575	3.4987	1.3966	1.2153	1.5916	1.9212
Co2O3	0.0032	0.0026	0.0019	0.0019	0.0008	0.0029	0.0011	0.0019
NiO	0.0195	0.0207	0.0122	0.0123	0.0107	0.0169	0.0127	0.0142
CuO	0.0159	0.0162	0.0100	0.0121	0.0128	0.0131	0.0125	0.0124
ZnO	0.0226	0.0219	0.0026	0.0034	0.0036	0.0178	0.0046	0.0091
Ga2O3	0.0043	0.0046	0.0013	0.0031	0.0037	0.0030	0.0032	0.0034
As2O3	0.0000	0.0027	0.0010	0.0019	0.0012	0.0000	0.0010	0.0017
Br	0.0003	0.0000	0.0002	0.0005	0.0005	0.0002	0.0006	0.0003
Rb2O	0.0168	0.0176	0.0039	0.0094	0.0093	0.0089	0.0090	0.0143
SrO	0.0195	0.0171	0.0044	0.0078	0.0105	0.0099	0.0097	0.0087
Y2O3	0.0030	0.0014	0.0018	0.0006	0.0012	0.0013	0.0011	0.0019
ZrO2	0.0163	0.0187	0.0615	0.0347	0.0335	0.0361	0.0341	0.0343
Nb2O5	0.0010	0.0002	0.0019	0.0011	0.0002	0.0007	0.0010	0.0012
MoO3	0.0000	0.0003	0.0001	0.0000	0.0000	0.0000	0.0003	0.0001
BaO	0.1062	0.0827	0.0184	0.0273	0.0517	0.0564	0.0588	0.0496
HfO2	0.0029	0.0023	0.0066	0.0052	0.0019	0.0078	0.0040	0.0049
PbO	0.0056	0.0003	0.0009	0.0000	0.0000	0.0044	0.0018	0.0027
ThO2	0.0010	0.0016	0.0000	0.0007	0.0006	0.0005	0.0010	0.0010
Ра	0.0063	0.0063	0.0006	0.0019	0.0031	0.0034	0.0021	0.0047
U3O8	0.0004	0.0006	0.0002	0.0006	0.0000	0.0001	0.0000	0.0006

LOWER RHAME BED										
	2b	28E	29D	34G	34H	35E	47E	561	59K	Mean
	Mass %									
Na2O	0.1196	0.1364	0.0884	0.0507	0.0889	0.1045	0.2168	0.1625	0.3783	0.1496
MgO	0.5828	5.7105	0.6784	0.3401	0.5377	1.3964	1.0151	1.2067	0.7536	1.3579
Al2O3	19.6366	15.8235	22.9774	18.4420	22.0579	18.9926	15.7959	17.4468	18.2119	18.8205
SiO2	75.0887	62.7308	71.9153	78.1274	72.8447	70.8412	77.1383	73.6340	75.6446	73.1072
P2O5	0.0389	0.1634	0.0431	0.0292	0.0375	0.0376	0.0297	0.0581	0.0354	0.0525
SO3	0.0951	0.1641	0.1051	0.0751	0.0689	0.3346	0.3093	0.3840	0.1176	0.1838
Cl	0.0000	0.0000	0.0000	0.0000	0.0040	0.0000	0.0025	0.0000	0.0041	0.0012
K2O	2.1739	3.8557	1.4035	1.2538	1.9121	4.1908	2.6839	3.6148	2.1250	2.5793
CaO	0.0906	4.8604	0.1985	0.1518	0.3044	0.2377	0.0889	0.1443	0.1581	0.6927
TiO2	0.8390	0.6293	0.8263	0.7181	0.9029	0.6388	0.5853	0.7269	0.8585	0.7472
V2O5	0.0375	0.0228	0.0423	0.0226	0.0379	0.0219	0.0218	0.0247	0.0352	0.0296
Cr2O3	0.0137	0.0095	0.0147	0.0108	0.0142	0.0109	0.0083	0.0104	0.0125	0.0117
MnO	0.0064	0.0977	0.0099	0.0035	0.0040	0.0076	0.0062	0.0074	0.0089	0.0168
Fe2O3	1.1093	5.5910	1.5407	0.6494	1.0220	2.9881	1.9492	2.3914	1.4500	2.0768
Co2O3	0.0018	0.0029	0.0032	0.0013	0.0016	0.0024	0.0000	0.0027	0.0049	0.0023
NiO	0.0149	0.0159	0.0144	0.0124	0.0145	0.0127	0.0129	0.0116	0.0225	0.0146
CuO	0.0159	0.0128	0.0168	0.0113	0.0148	0.0133	0.0132	0.0118	0.0148	0.0139
ZnO	0.0114	0.0133	0.0059	0.0044	0.0090	0.0161	0.0076	0.0086	0.0214	0.0109
Ga2O3	0.0039	0.0029	0.0036	0.0025	0.0015	0.0038	0.0029	0.0039	0.0042	0.0032
As2O3	0.0017	0.0042	0.0000	0.0021	0.0000	0.0046	0.0000	0.0009	0.0022	0.0017
Br	0.0003	0.0000	0.0004	0.0005	0.0008	0.0006	0.0007	0.0008	0.0006	0.0005
Rb2O	0.0115	0.0212	0.0107	0.0069	0.0114	0.0225	0.0155	0.0182	0.0101	0.0142
SrO	0.0095	0.0113	0.0123	0.0044	0.0109	0.0094	0.0063	0.0083	0.0132	0.0095
Y2O3	0.0022	0.0026	0.0010	0.0016	0.0024	0.0027	0.0025	0.0041	0.0014	0.0023
ZrO2	0.0314	0.0203	0.0368	0.0311	0.0336	0.0228	0.0399	0.0289	0.0342	0.0310
Nb2O5	0.0013	0.0006	0.0018	0.0000	0.0014	0.0014	0.0000	0.0012	0.0007	0.0009
MoO3	0.0000	0.0000	0.0001	0.0006	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001
BaO	0.0529	0.0849	0.0328	0.0390	0.0485	0.0710	0.0324	0.0588	0.0684	0.0543
HfO2	0.0045	0.0039	0.0046	0.0045	0.0041	0.0042	0.0051	0.0053	0.0039	0.0045
PbO	0.0000	0.0000	0.0075	0.0000	0.0046	0.0000	0.0038	0.0148	0.0000	0.0034
ThO2	0.0010	0.0000	0.0010	0.0000	0.0007	0.0012	0.0000	0.0009	0.0002	0.0006
Ра	0.0033	0.0079	0.0035	0.0027	0.0030	0.0082	0.0060	0.0000	0.0033	0.0042
U3O8	0.0004	0.0003	0.0000	0.0002	0.0001	0.0004	0.0000	0.0072	0.0003	0.0010

Upper SENTINEL BUTTE				
Fm.				
	19G	21G	241	MEAN
	Mass %	Mass %	Mass %	Mass %
Na2O	0.3267	0.1084	0.4872	0.3074
MgO	0.0908	0.6344	1.1463	0.6238
Al2O3	20.1907	19.0000	19.7268	19.6392
SiO2	75.1495	73.8580	71.7850	73.5975
P2O5	0.0320	0.0297	0.0349	0.0322
SO3	0.4013	0.3715	1.1131	0.6286
Cl	0.0000	0.0000	0.0000	0.0000
К2О	1.0394	1.2863	2.8268	1.7175
CaO	0.0639	0.0625	0.0492	0.0585
TiO2	0.8542	0.7399	0.8171	0.8037
V2O5	0.0243	0.0303	0.0364	0.0303
Cr2O3	0.0115	0.0116	0.0117	0.0116
MnO	0.0063	0.0124	0.0243	0.0143
Fe2O3	1.6549	3.7226	1.7233	2.3669
Co2O3	0.0022	0.0016	0.0032	0.0023
NiO	0.0145	0.0126	0.0155	0.0142
CuO	0.0101	0.0126	0.0164	0.0130
ZnO	0.0126	0.0062	0.0140	0.0109
Ga2O3	0.0047	0.0024	0.0027	0.0033
As2O3	0.0010	0.0026	0.0023	0.0020
Br	0.0001	0.0004	0.0000	0.0002
Rb2O	0.0074	0.0064	0.0132	0.0090
SrO	0.0110	0.0059	0.0094	0.0088
Y2O3	0.0021	0.0010	0.0024	0.0018
ZrO2	0.0338	0.0276	0.0234	0.0283
Nb2O5	0.0014	0.0012	0.0005	0.0010
MoO3	0.0000	0.0000	0.0001	0.0000
BaO	0.0467	0.0453	0.1106	0.0675
HfO2	0.0039	0.0050	0.0000	0.0030
PbO	0.0000	0.0000	0.0000	0.0000
ThO2	0.0000	0.0000	0.0001	0.0000
Ра	0.0023	0.0016	0.0040	0.0026
U3O8	0.0007	0.0000	0.0001	0.0003

Lower BULLION							
CREEK FM.	56A	56B	56C	56D	59A	59B	MEAN
	Mass %	Mass % N	lass %	Mass %	Mass %	Mass %	Mass %
Na2O	0.2424	0.3184	0.3303	0.2022	0.8488	1.1408	0.5138
MgO	5.0876	1.1298	0.6650	0.3796	5.2165	4.5486	2.8379
Al2O3	15.1100	16.2281	19.5781	13.9135	14.8376	15.2142	15.8136
SiO2	62.4195	76.0433	76.0784	82.6602	60.4811	62.8563	70.0898
P2O5	0.1923	0.0353	0.0344	0.0341	0.1417	0.1273	0.0942
SO3	1.8956	0.3121	0.3260	0.4913	0.0733	0.1268	0.5375
Cl	0.0000	0.0000	0.0031	0.0000	0.0000	0.0120	0.0025
K2O	2.9296	3.0149	0.8298	0.1573	3.8588	4.2090	2.4999
CaO	6.9699	0.1510	0.1344	0.1246	8.9749	6.4930	3.8080
TiO2	0.6235	0.6642	0.9494	1.1906	0.5014	0.5218	0.7418
V2O5	0.0248	0.0145	0.0175	0.0176	0.0206	0.0236	0.0198
Cr2O3	0.0102	0.0072	0.0091	0.0075	0.0103	0.0096	0.0090
MnO	0.0678	0.0579	0.0045	0.0038	0.1033	0.1252	0.0604
Fe2O3	4.2548	1.8700	0.9060	0.6919	4.7380	4.3797	2.8067
Co2O3	0.0039	0.0008	0.0006	0.0027	0.0039	0.0034	0.0025
NiO	0.0151	0.0125	0.0145	0.0164	0.0159	0.0154	0.0150
CuO	0.0144	0.0109	0.0120	0.0114	0.0144	0.0134	0.0127
ZnO	0.0149	0.0096	0.0070	0.0046	0.0134	0.0127	0.0104
Ga2O3	0.0032	0.0017	0.0050	0.0036	0.0033	0.0024	0.0032
As2O3	0.0000	0.0000	0.0035	0.0000	0.0000	0.0019	0.0009
Br	0.0005	0.0006	0.0004	0.0003	0.0004	0.0004	0.0004
Rb2O	0.0174	0.0166	0.0062	0.0000	0.0220	0.0236	0.0143
SrO	0.0147	0.0064	0.0055	0.0040	0.0153	0.0128	0.0098
Y2O3	0.0021	0.0013	0.0020	0.0044	0.0018	0.0015	0.0022
ZrO2	0.0253	0.0334	0.0492	0.0592	0.0151	0.0164	0.0331
Nb2O5	0.0004	0.0015	0.0014	0.0028	0.0004	0.0000	0.0011
MoO3	0.0000	0.0000	0.0004	0.0004	0.0000	0.0000	0.0001
BaO	0.0468	0.0435	0.0178	0.0014	0.0710	0.0788	0.0432
HfO2	0.0023	0.0040	0.0053	0.0080	0.0023	0.0040	0.0043
PbO	0.0047	0.0047	0.0000	0.0057	0.0061	0.0009	0.0055
ThO2	0.0003	0.0000	0.0011	0.0007	0.0005	0.0029	0.0006
Ра	0.0056	0.0056	0.0020	0.0000	0.0079	0.0095	0.0040
U308	0.0005	0.0002	0.0001	0.0002	0.0000	0.0003	0.0018

Upper							
SLOPE Fm.	29E	29F	341	41D	48C	48D	MEAN
	Mass %						
Na2O	0.0628	0.1356	0.0713	0.0928	0.6659	0.8611	0.3149
MgO	0.0922	0.6797	0.7858	1.0249	0.3214	1.9084	0.8021
Al2O3	19.1969	20.3642	18.1652	17.2439	18.2576	19.4913	18.7865
SiO2	77.1117	74.6492	75.8314	73.6953	73.5310	68.7881	73.9345
P2O5	0.0325	0.0581	0.0366	0.0387	0.0920	0.1285	0.0644
SO3	0.1196	0.1204	0.0612	0.4752	0.1692	0.4680	0.2356
Cl	0.0000	0.0000	0.0000	0.0050	0.0000	0.0000	0.0008
К2О	1.1007	1.4658	2.2392	3.7132	2.2691	2.9646	2.2921
CaO	0.1509	0.1242	0.4391	0.0311	0.3511	0.3418	0.2397
TiO2	0.7277	0.7595	0.7608	0.7148	0.7225	0.6550	0.7234
V2O5	0.0320	0.0303	0.0108	0.0213	0.0332	0.0174	0.0242
Cr2O3	0.0125	0.0135	0.0099	0.0096	0.0108	0.0117	0.0113
MnO	0.0057	0.0070	0.0062	0.0068	0.0186	0.0297	0.0123
Fe2O3	1.2088	1.4136	1.3915	2.7427	3.3567	4.1252	2.3731
Co2O3	0.0032	0.0057	0.0035	0.0020	0.0033	0.0074	0.0042
NiO	0.0142	0.0211	0.0180	0.0128	0.0185	0.0184	0.0172
CuO	0.0120	0.0118	0.0123	0.0136	0.0142	0.0131	0.0128
ZnO	0.0091	0.0423	0.0226	0.0106	0.0174	0.0211	0.0205
Ga2O3	0.0031	0.0044	0.0037	0.0026	0.0034	0.0046	0.0036
As2O3	0.0032	0.0031	0.0000	0.0052	0.0000	0.0036	0.0025
Br	0.0005	0.0007	0.0000	0.0004	0.0005	0.0008	0.0005
Rb2O	0.0068	0.0092	0.0169	0.0186	0.0148	0.0191	0.0142
SrO	0.0079	0.0103	0.0139	0.0079	0.0165	0.0140	0.0118
Y2O3	0.0014	0.0038	0.0026	0.0025	0.0019	0.0035	0.0026
ZrO2	0.0457	0.0366	0.0383	0.0336	0.0324	0.0247	0.0352
Nb2O5	0.0014	0.0008	0.0010	0.0008	0.0009	0.0009	0.0010
MoO3	0.0002	0.0000	0.0003	0.0000	0.0000	0.0006	0.0002
BaO	0.0285	0.0175	0.0405	0.0629	0.0594	0.0634	0.0454
HfO2	0.0065	0.0076	0.0057	0.0047	0.0082	0.0061	0.0065
PbO	0.0000	0.0000	0.0046	0.0000	0.0038	0.0000	0.0014
ThO2	0.0005	0.0003	0.0000	0.0000	0.0003	0.0012	0.0004
Ра	0.0018	0.0037	0.0067	0.0065	0.0053	0.0067	0.0051
U3O8	0.0000	0.0000	0.0004	0.0000	0.0001	0.0000	0.0001

Appendix D

Clay Mineralogy by X-Ray Diffraction

Clay Mineralogy by X-Ray Diffraction

Dean Grier and Eric Jarabek Center for Nanoscale Science & Engineering North Dakota State University June 30, 2013

Qualitative XRD Results

The mineralogical results for crystalline phases, as determined by XRD, are given below.

Sample Series 4 (4A, 4B, 4C)

(3) [4C_airdried.bin (2) [4B_airdried.bin (1) [4A_airdried.bin]

<u>Clay Minerals</u> **Mica-illite** and **kaolinite** were present, with kaolinite being the dominant phase. Presence of very poorly ordered smectite or other large basal spacing clays is also possible. No glycolation performed on these samples to confirm or deny.

Non-Clay Minerals Minor quartz.

<u>Qualitative Trends Noted:</u> Kaolinite peaks higher in 4A than in 4B and 4C, which had very similar peak heights. Otherwise, these three samples are remarkably similar by x-ray diffraction.

Sample Series 15 (15E, 15J)

<u>Clay Minerals</u> **Kaolinite** was the dominant phase in both scans. Major illite present in 15E, and minor to trace amounts of illite present in 15J. Presence of smectite positively confirmed by glycolation treatment in 15E.

Diffraction patterns before and after glycolation treatment for sample 15J show a significant change over the low angle range of approximately 4-9 degrees 2-theta. The low angle "tail" visible for the illite (001) peak is not present after solvation with ethylene glycol, and the background at lower angles (4-6 degrees or so) shows a slight elevation following treatment, without producing a distinct diffraction maxima at 5.2 degrees, as would be expected for pure smectite. There is also a change in the background between 21-26 degrees 2-theta. This would suggest the presence of a swelling clay such as interlayered illite-smectite with a very low smectite component. However, glycolation treatment also produced a significant change in the (001) peak of kaolinite in sample 15J. Following treatment, this reflection has increased peak height, reduced peak width, and position shift, perhaps corresponding to the dehydration of an associated 10 Angstrom species (halloysite?) that contributed intensity to the low angle side of K(001) prior to glycolation. See note at end of this section regarding 10 Angstrom halloysite.

<u>Non-Clay Minerals</u> **Quartz** present in both samples. Trace amounts of **potassic feldspar** were noted in sample 15E, and **goethite** was observed in sample 15J (converted to **maghemite** during heat treatment). Minor **anatase**, suggested by a weak and otherwise unaccounted reflection near 48 degrees, was confirmed by thermal treatment, which revealed the characteristic reflection of anatase near 25.2 degrees following disappearance of the overlapping kaolinite (002) reflection.

<u>Clay Minerals</u> Smectite, mica-illite, and kaolinite were present in all samples. Kaolinite was dominant in all cases, with peak heights decreasing toward the center at sample 18C. Minor illite peak heights decrease from 18A through 18D, rising again in 18E. Smectite was confirmed by treatment with ethylene glycol in samples 18A, 18B, and 18D. By comparison within this sample set, poorly ordered smectite is probable in all five samples. Chlorite was also present in amounts near the detection limit in sample 18B.

<u>Non-Clay Minerals</u> **Quartz**. Minor **anatase** revealed in heat treated specimens of 18A, 18B, and 18D. Based on the weak reflection near 48 degrees 2-theta, anatase is also probable in 18C, and possible in 18E.

Smectite, **mica-illite**, and **kaolinite** were present in all samples. Kaolinite was dominant in all cases, with the highest reflection in sample 19F. Mica-illite peak heights are uniformly low. Smectite was confirmed by treatment with ethylene glycol in sample 19F, and apparent in the air-dried specimens of the other samples in this series. Variation among smectite diffraction intensity contributions at low angles are the primary differences among this series of samples.

Non-Clay Minerals

Quartz. Minor **anatase** likely in all samples, based on the weak reflection near 48 degrees 2-theta, and confirmed at 25.2 degrees 2-theta by heat treatment of sample 19F.

Smectite, **mica-illite**, and **kaolinite** were present in all samples. Kaolinite was dominant in all cases, with peak heights decreasing from sample 22A through 22C, then increasing and holding relatively constant through samples 22D-22F. Minor illite peak heights vary from minor in samples 22A through 22C to weak in samples 22D through 22F. Smectite was confirmed by treatment with ethylene glycol in sample 22F, and apparent in the air-dried specimens of all other samples of this series with the possible exception of 22C.

Non-Clay Minerals

Quartz and potassic feldspar. Minor **anatase** revealed in the heat treated specimen of 22F. Based on the weak reflection near 48 degrees 2-theta, anatase is also probable in the remainder of the samples. One specimen (22C) has a weak, broad reflection near 21.1 degrees 2-theta. This is near the characteristic line of goethite, but there are no unaccounted additional reflections present to confirm. This is also the position that poorly-ordered hydrated silica phases produce reflections, often in assemblages rich in bentonite.

Qualitative Trends Noted

The first three of these specimens (22A-22C) share a common assemblage according to XRD data (low smectite, minor illite, dominant kaolinite in a decreasing series; quartz, feldspar, anatase). The primary variation in this set of three is the decreasing intensity of kaolinite. The second set of three (22D-22F) also bear remarkable similarity as a separate assemblage (notably higher amounts of smectite relative to 22A-22C, very low amounts of illite, relatively constant kaolinite; quartz, feldspar, anatase), with less variation among them compared to 22A-22C.

Smectite, **mica-illite**, and **kaolinite** were present in all samples. Smectite was apparent in each of these ground bulk samples. (Note: the above series of diffractograms are from random orientation specimens that were "side-drifted" into aluminum well mounts, rather than prepared on glass slides.) Mica-illite begins in sample 28A with fairly broad peaks typical of soil illite. Samples 28C-E all have sharp peaks corresponding to the 10A phase, suggesting the possibility of a micaceous phase. Kaolinite is only the major phase in samples 28B and 28C, where smectite is also present in significant proportions. **Chlorite** is present in samples 28D and 28E.

<u>Non-Clay Minerals</u> **Quartz**. **Potassic feldspar** in all samples; trace amounts in 28A and 28B and significant amounts in 28C-E. 28D had minor **gypsum** present, and 28E had major **dolomite** present. **Anatase** was found in samples 28A, 28B, and 28D. The non-clay mineral assemblage represented in these samples sets this series apart from the rest of the samples in this study.

Mica-illite and **kaolinite** were present in varying abundances in this series of samples. The presence of a swelling phase such as **smectite** was confirmed by treatment with ethylene glycol in samples 29C and 29D, by careful study of the background levels at low angles. The effect was relatively subdued, suggesting low abundances of swelling material.

Non-Clay Minerals

Quartz. Trace occurrences of **potassic feldspars** observed in some specimens of this series. Anatase positively identified near the detection limit in heat treated specimens of samples 29C and 29D. Based on the weak reflection of **anatase** near 48 degrees 2-theta, anatase is likely in small amounts in each of these samples.

Qualitative Trends Noted

As with sample series 22, this series appears to have two different assemblages, separated into two groups of three samples. The early set (29A-29C) consist of minor swelling material, rising amounts of illite from 29A to 29C (concurrent with narrower illite peaks, suggesting higher long-range order), dominant kaolinite; quartz, feldspar, and anatase. The kaolinite peaks in the air-dried specimens of samples 29B and 29C are noteworthy, and treated in a separate following figure. Visual observation shows these reflections to be notably broader than their conterparts in 29D-F (and even 29A). The kaolinite reflections in the specimen of 29C that was subjected to solvation with ethylene glycol resembles the kaolinite reflections of 29D-F (and 29A). See the following figure. The second set of samples (29D-F) show consistent illite levels, higher but varying kaolinite peak heights (highest from sample 29E), as well as significantly reduced levels of quartz relative to samples 29A-C.

Air-dried specimens of samples 29B and 29C display 7 Angstrom ("kaolinite") peaks that would follow Mering rules if interlayering was present between the 7A phase(s) and a 10A phase, such as hydrated halloysite. That is, the (001) kaolinite reflection is shifted toward a higher d-spacing / lower 2-theta value, which would be consistent with an interference pattern between reflections generated by a 7A (001) reflection near 12.5 degrees 2-theta and a 10A (001) reflection near 8.8 degrees 2-theta. Similarly, the 7A (002) peak shifts toward a lower d-spacing / higher 2-theta value, which would be consistent with an interference pattern between the 7A (002) reflection near 8.8 degrees 2-theta. Similarly, the 7A (003) near 26.6 degrees 2-theta. Following treatment with ethylene glycol, the 7A reflections in sample 29C conform to the peak width and shape of the remaining air-dried specimens. This may suggest dehydration of an interlayered 10A halloysite during glycolation.

Mica-illite and **kaolinite** were present in varying abundances in this series of samples. The presence of a swelling phase such as **smectite** was apparent in the air-dried specimens of 41A and 41D; possible also in 41B. Sample 41A appears to be dominated by a very poorly ordered swelling phase (see large, very broad rises in background between 5 and 10 degrees 2-theta, and again between 10 and 14 degrees 2-theta). Trace amounts of **chlorite** are possible in all three samples, and suggested by peaks near 25.2 degrees 2-theta that don't have corresponding significant intensity near 48 degrees 2-theta to suggest anatase.

Non-Clay Minerals Quartz.

Qualitative Trends Noted

These three samples, while containing the same general families of phyllosilicate mineral species, differ considerably from each other. If there are any distinctions that draw attention to similarities, then it would be the distinctiveness of sample 41A over against 41B and 41D: the large contributions from a poorly ordered swelling phase, the very low kaolinite content, together with the relatively high abundance of quartz set this sample apart from samples 41B and 41D.

Mica-illite and **kaolinite** were present in varying abundances in this series of samples. The minor presence of a swelling phase such as **smectite** was suggested for these samples, based on slight rises in the low angular region of the diffraction patterns.

Non-Clay Minerals

Quartz. Trace occurrences of **potassic feldspars** observed in some specimens of this series. Based on the weak reflection of **anatase** near 48 degrees 2-theta, anatase may be present in trace amounts in each of these samples.

Qualitative Trends Noted

As with the broadened kaolinites noted in samples 29B and 29C, the kaolinite (001) and (002) reflections from the air-dried specimen of sample 44C are notably broadened, and shifted toward 10A (001) and (003) reflections, respectively. This may again suggest the presence of an interlayered 10A species such as mica-illite or hydrated halloysite. Illite increases continuously from sample 44A to 44C. Quartz abundance appears relatively constant throughout this sample series.

Mica-illite and **kaolinite** were present in varying abundances in this series of samples. Kaolinite was the dominant phase throughout the series. The presence of a swelling phase such as **smectite** was apparent in the air-dried specimens of samples 56C-56E, and possible in the remaining samples. Notably, samples 56D and 56E contain the lowest peak heights of mica-illite found among this entire study, with the level of mica-illite nearing the detection limit for sample 56D.

Non-Clay Minerals

Quartz. Based on the weak reflection of **anatase** near 48 degrees 2-theta, trace amounts of anatase are possible in samples 56C, 56D, 56E, and perhaps 56F, though unlikely in 56G.

Qualitative Trends Noted

Once again, the character of the kaolinite peaks is the major differentiating factor in this series of samples. Samples 56C-56E contain consistent quartz levels, higher than those of 56F and 56G. Similarly, Sample 56C-56E share in common very low levels of mica-illite relative to 56F and 56G. Additionally, the peak heights of the kaolinite (001) and (002) reflections decrease continuously from sample 56C to 56E, then increase again in 56F, only to decrease finally in 56G. Despite this apparent grouping that would separate 56C-56E from 56F and 56G, the variation among kaolinite peak broadening breaks between 56D and 56E. Both samples 56C and 56D have relatively narrow kaolinite peak widths, while 56E through 56G have markedly broadened reflections, once again shifted outwards, toward positions consistent with neighboring (001) and (003) reflections of a 10A phase such as mica-illite or 10A halloysite.

XRPD peak shifts of 7 Å phase relative to nominal positions. A zero-offset was applied to both scans to align the 26.6 °20 peak of quartz. Kaolinite (001) and (002) nominal positions are marked according to PDF entry 58-2001, at positions 12.347 °20 (7.1628 Å) and 24.848 °20 (3.5804 Å), accordingly. While the {001} reflections of kaolinite in sample 56C is not greatly broadened, as its counterpart in sample 56G, it still shows peak shift of the (001) toward 10Angstroms, and the (002) toward a (003) reflection of a 10A phase. This Mering shift, if it is so, is more pronounced for the (001) of kaolinite, due to a greater separation between the interfering 12.5 degree and 8.8 degree (001) reflection of the 7A and 10A species, respectively. The separation between the 25 degree (002) of the 7A kaolinite and the 26.6 degree (003) of the alleged 10A interlayered phase is a lesser separation, resulting in a slightly peak position offset.

Comparison of diffractograms from samples bearing a variety of 7A phyllosilicates found in this study. Sample 28E includes chlorite. Sample 4A displays a nearly ideal kaolinite relative to peak positions from the PDF reference pattern. Sample 29E appears to show significant Mering Rule peak displacement. Finally, sample 41B appears to be perhaps bimodal, with distinct or graded populations of kaolinites of varying amounts of proposed interlayering with a 10A species.

Relative Phase Abundance Results

Diffraction profiles were fit according to the phases identified during the qualitative analyses. The primary goal was to account for the diffraction intensities of the identified peaks, rather than to accurately model the whole patterns. Whole pattern fitting was attempted briefly, based on Powder Diffraction File standard pattern overlays. However, this method proved inaccurate at best, especially regarding the kaolinite patterns, which exhibited asymmetric peak shifts from ideal positions.

Backgrounds were manually selected for each pattern prior to peak profile fitting. Note that for the low angle region, especially corresponding to the swelling clays with basal peaks below 10 degrees 2-theta, fitting the background can introduce considerable variability. In many cases, for example, extremely broad diffraction maxima from the range of basal spacings present in a population of smectitic material may appear as a gradual elevation of the background across many degrees, rather than a distinct peak, or even a discernable "bulge" in the background. Solvation with ethylene glycol often reveals the presence of swelling clays, as the glycol sets a fixed basal spacing.

An additional factor introducing variability is the nature of the specimen mounts chosen. Standard oriented "smears" of clay-sized material were rolled out onto glass slides. In addition to the variability caused by the degree of preferential orientation achieved (a function of particle size and shape), the thickness of the specimens above the glass slide may vary. Materials that transfer as a very thin smear are at risk of violating the need for "infinite x-ray thickness." That is, at higher angles especially, samples thinner than several tens of micrometers may not contain the full penetration of the x-rays. In this case, the sampled volume will not be uniform across specimens. In this study, the risk of this condition was minimized by uniform handling by a single technician preparing all of the specimen mounts.

In a further effort to minimize the effects of variable specimen mount thickness, the relative abundance charts shown below correspond to individual peak areas normalized against the total area of peaks fit in their corresponding diffraction patterns (that is, all peaks between 2 and 30 degrees 2-theta).

Total Refined Peak Area

The total fit peak area for each diffractogram is given above, sorted from least to greatest. It is not surprising that the lowest total areas correspond to the fits done for specimen mounts that had been heated to 550 C. This heat treatment collapses the long range ordering of the kaolinite, and the corresponding X-ray amorphous material was accounted for in the background profile.

Beyond that explanation, the remainder of the specimen demonstrate a range of a little over twofold in total peak area above background. This range may be due to inherent sample effects -(higher abundance of strongly diffracting phases, for example), and/or bulk specimen effects, such as thickness of the sampled volume. As such, peak area values for individual analytes were normalized against the total peak area of their corresponding profile-fit diffraction patterns.

Refinement R-values for each specimen subjected to profile fitting. The R-value is a measure of the closeness of the match between the experimental and calculated peaks. With no values above 10%, these are within acceptable range.

Profile Fitting Precision Test

Precision test of the profile fitting method used: three replicate attempts to fit peak profiles of the same diffraction trace (sample 28A, air dried; see fit profiles below). The same number of simulated peaks, in the same locations, were introduced in each trial prior to refinement against the experimental data.

Note the close precision of the Qz and Kaolinite (001) peak areas. These two have the least interferences with other overlapping peaks. For those with significant overlap, low intensities, and poorly defined diffraction maxima, the range of peak area results is considerably increased. In particular, correlation between the closely overlapping reference peak of quartz and the illite (003) peak (both near 26.6 degrees 2-theta) caused difficulty in most cases producing peak fits that made visual/qualitative sense. In several cases the degrees of freedom in fitting these overlapping peaks were temporarily restrained or reset prior to final refinement.

Peak area trends for each sample series are given below, followed by the individual profile fitting experiments used to generate these data. Note for example, that sample 18A is represented by four experiments: the first three exploring the use of broad peaks to represent swelling phyllosilicate contributions, and a fourth representing a separate specimen mount. Because series 15 and 28 each only contain two samples with standardized oriented mounts, their relative abundances may be observed in the overlay patterns given.

Visual overlay comparison of basal spacings in the full set of air-dried oriented mount specimens. The specimens producing the highest diffraction peaks for each respective clay type are noted. Though other factors may be significant, phase abundance is one of the primary contributions to diffraction peak intensity.

Series 4 Abundance Trends (Normalized)

Series 19 Abundance Trends (Normalized)

Series 22 Abundance Trends (Normalized)

Series 29 Abundance Trends (Normalized)

Series 41 Abundance Trends (Normalized)

Series 44 Abundance Trends (Normalized)

XRay Diffraction settings for this project:

Focused Beam (Bragg-Brentano Geometry/Mode) with monochromator Selection Slit: BB (Bragg-Brentano) Divergence Slit: 2/3 deg Height Limiting Slit: 10mm PSA Box Components: 5° V K-beta filter: No Scattering Slit: 2/3 deg Receiving Slit (chosen for good intensity): 0.3mm Monochromator: Yes, 0.8mm slit with monochromator in bent mode Copper Anode (Cu-K α) 40kV; 44mA