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Kenmare 100K Sheet, North Dakota

Deep Geothermal Resources: Estimated Temperatures on Top of the Red River Formation
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Geothermal energy is a renewable resource capable of producing an uninterrupted supply of electrical power
and heat. In stable sedimentary basins, low-temperature geothermal energy (<40°C) is extracted from the
shallow subsurface (~2-200 m [8-600 feet]) for use in domestic and commercial heating and cooling systems.
Historically, deeper, hotter resources in these regions have not been developed because they typically lack one
or more of the essential requirements that make high-temperature geothermal resources technically and
economically viable.

Conventional methods of electricity generation using geothermal energy rely on hot (> 100°C) relatively
shallow (<3,000 m [10,000 feet]), easily developed hydrothermal resources. Generally associated with active
plate boundaries and/or volcanism, these high-grade hydrothermal systems are characterized by high thermal
gradients, and highly fractured, porous reservoir rocks through which natural waters or steam can freely
circulate. Large-scale, cost-effective electric power generation usually requires fluid temperatures above
150°C but smaller systems based on standard binary-cycle technology are capable of producing electricity
using geothermal fluids at temperatures as low as 100°C.

Natural sources of high-grade hydrothermal energy are geographically limited. In the U.S. they are restricted
to the western states and currently represent less than 1% of the nation’s electrical power generating capacity.
Yet the amount of heat at depths less than 10,000 m (30,000 feet) below the surface of the continental U.S. is
substantial. By replicating natural hydrothermal conditions it is possible, in some regions, to turn this heat into
an economically viable resource. In 2005 an 18-member MIT-led interdisciplinary panel conducted a
comprehensive technical and economic assessment of geothermal energy as a viable source of energy for the
U.S. (Tester and others, 2006). The study estimated that, based on current technology, geothermal energy
could be producing more than 100GW of affordable electricity by 2050, equivalent to roughly 10% of the
U.S.” present-day capacity.

Enhanced (or engineered) geothermal systems (EGS) are engineered reservoirs designed to produce energy as
heat or electricity from geothermal resources that are otherwise not economical due to lack of water and/or
permeability (U.S. Department of Energy, 2008). EGS technology uses adaptations of techniques developed
in the oil and gas, and mining industries to fracture hot, low-porosity rocks in the deep subsurface and extract
the heat with water via a system of injection and production wells.

With infrastructures already in place and the abundance of horizontally drilled and/or artificially stimulated
wells, hydrocarbon fields are prime candidates for the application of EGS technology. Of particular interest
are those wells regarded as marginal or unproductive because they produce too much water. Geothermal
waters that are coproduced with oil and gas are an expensive waste product that in North Dakota must be
disposed of by re-injection into the subsurface. If sufficiently hot (>100°-150°C) and available in sufficient
quantity, however, these waters may be capable of generating cost-effective electricity (McKenna and others,
2005).

The Ordovician-age Red River Formation is the deepest of four major geothermal aquifers that occur in
the Williston Basin. The map shows calculated temperatures (°C) for the top of the Red River Formation in
the vicinity of Kenmare in northwestern North Dakota.

There are no data sets for North Dakota that list accurate temperatures for Paleozoic rocks. Bottom hole
temperatures from oil well logs are unreliable and to assume that a simple linear relationship exists between
temperature and depth would be incorrect. Although grossly linear the geothermal gradient in the upper
lithosphere is significantly affected by thermal variables (heat flow and thermal conductivity) in the earth’s
crust and any method used to accurately calculate subsurface temperatures must take these factors into
account. Provided the subsurface stratigraphy is known, Gosnold (1984) showed that at a given depth (Z) the
temperature (T) can be represented by the following equation:

T=T,+ [ Z(Q/K))

Where:

T, = Surface temperature (in °C)

Z; =Thickness of the overlyingrock layer (in meters)
K; =Thermal conductivity of the overlying rock layer
N = Number of overlying rock layers

Q = Regional heat flow

For the data set used to produce this map T, and K were assumed to be constants. Mean surface tem perature

(T,= 8.0°C [46.4°F]) was calculated from statewide average annual bare and turf soil temperatures at 79
North Dakota Agricultural Network climate monitoring stations for the period 1991 to 2010

http//wwwlndsu.edu/ndsco. Thermal conductivities (K) for formations overlying the Red River Formation
are shown in Table 1.

Estimated regional steady state heat flow Q = 70.0 mW/m* (Blackwell and Richards, 2004).

Rock units and thicknesses were obtained from oil well log tops (December 2010 update). The map was
compiled using approximately 40 data points (wells).

Table 1. Thermal conductivity estimates for principal lithostratigraphic units overlying the Red River Formation
in the Williston Basin.
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'Themal conductivities for formations above, and including, the Spearfish were estimated using data from temperature-depth logs for
Hess Corporation’s Tioga-Madison Unit O-143HR well in SW4, NW4, Sec. 17, TI5S8N, R94W (shown in red on the map). All other
thermal conductivities are from Gosnold (2009).

* The Kibbey Lime is a limestone bed in the K ibbey Formation that is a prominent marker on electronic logs.
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